Abstract:
A hybrid cord is presented for use in the reinforcement of elastomers. The hybrid cord is characterized by having a core steel filament, a first layer of one or more nonmetallic filaments which are wrapped about the steel filament in the core, and a second layer of from 4 to 12 steel filaments which are wrapped about the first layer.
Abstract:
A pneumatic radial ply tire (50) having a tread (52), a carcass (60) with two sidewalls (77, 78), two or more radial plies (70, 72), two annular beads (36a′, 36b′), a belt structure (56) located radially between the tread and the radial ply structure (58), one or more circumferentially deployed high-modulus incompressible belt reinforcements (66) and/or two or more circumferentially deployed high-modulus tensile-stress-bearing fabric reinforcements (59). Belt reinforcement(s) (66) and/or fabric reinforcement(s) (59) work to increase the lateral and circumferential rigidity of the tread (52) and underlying structures of the carcass (60). The lateral and circumferential stiffening of the tread (52) enhances high-speed runflat handling and contributes to improved runflat operational life.
Abstract:
A tire assembly (200) having runflat capability comprises a tire (202) mounted to a rim (203) to provide a tire cavity (204) defined by a carcass circumferential inner surface (246), two sidewall inner surfaces (248A,248B) and the rim. The tire assembly (200) is characterized by having a platform (206) disposed circumferentially around the rim within the tire cavity and one or more hoops (208A-208C) disposed within the tire cavity (204) between the platform (206) and the carcass circumferential inner surface (246) so that under normal inflation the one or more hoops do not contact either the carcass circumferential inner surface (246) or the sidewall inner surfaces (248A,248B), but below a first runflat inflation pressure, the one or more hoops (208A-208C) contact and support the carcass circumferential inner surface (246).
Abstract:
Tires using high tensile reinforcement with values of at least 1240 N (280 lbs) for U+T type cord and at least 2000 N (450 lbs) for bunched type cord.
Abstract:
A mold and molding device for forming a sunken groove in a tire is provided. The molding device includes a thin flexible wire having a desired cross-sectional shape. The wire thickness can range from about 0.5 mm to about 5 mm. The flexible wire is preferably hyperelastic. An optional molding element may be connected to the flexible wire.
Abstract:
A tire mold and a molding device for forming a sunken groove in a tire are provided. The molding device includes one or more rigid elements joined to a flexible member. The flexible member is formed from a flexible material, preferably a superalloy, or hyperelastic material. The molding device may further comprise a magnet. A portion of the flexible member is positioned in contact with a first surface of a relief forming element of a mold and the rigid element has a mating surface in mating contact with a second surface of the relief forming element. The mold further may further comprise a second relief forming element positioned adjacent the first relief forming element, wherein the rigid element further includes an outer surface in mating contact with a surface of said second relief forming element.
Abstract:
A tire mold and a molding device for forming a sunken groove, sipe in a tire is provided. The molding device molding device comprises a flexible member and a blade element, the flexible member having a distal end for mounting to a tire mold, a radiused midsection and a second end, wherein a portion of the second end is embedded within the blade element, the blade element having a lower surface with a cutout to allow bending of the flexible member.
Abstract:
A mold and molding device for forming a sunken groove in a tire is provided. The molding device includes a thin flexible wire having one or more molded elastomer elements thereon. The flexible wire is preferably hyperelastic and the molded elastomer is preferably silicone rubber.
Abstract:
A tire mold and a molding device for forming a sunken groove in a tire are provided. The molding device includes one or more rigid elements joined to a flexible member along an attachment point or line on the connecting surface of the rigid element. The flexible member is formed from a flexible material, preferably a superalloy, or hyperelastic material. If multiple rigid elements are utilized, the rigid elements are closely spaced together such that a portion of the opposed walls are in mating contact with an adjacent rigid element.