Abstract:
Expansion of the bandwidth of a wideband CMOS data amplifier is accomplished using various combinations of shunt peaking, series peaking, and miller capacitance cancellation. These various combinations are employed in any of the amplifier input stage, in intermediate stages, or in the last stage.
Abstract:
A converter for converting a single-ended input V.sub.IN to a differential output signal V.sub.OUT through positive and negative output terminals is disclosed. The converter comprises a fully differential amplifier with one of its input terminals coupled to the single-ended input and its other input terminal coupled to a fixed voltage. The converter also has a first resistor ("R.sub.1 ") coupled between the single-ended input and the positive input terminal of the fully differential amplifier, a second resistor ("R.sub.2 ") coupled between the fixed voltage and the negative input terminal of the fully differential amplifier, a third resistor ("R.sub.3 ") coupled between the positive input terminal and the negative output terminal of the fully differential amplifier, and a fourth resistor ("R.sub.4 ") coupled between the negative input terminal and the positive output terminal, wherein the values of such resistors are governed by: ##EQU1## The same principles can be applied to differential-to-single-ended converters as well.
Abstract:
Various example embodiments are disclosed. According to an example embodiment, an apparatus may include a continuous time filter, a decision feedback equalizer, a clock and data recovery circuit, and an adaptation circuit. The adaptation circuit may be configured to adapt equalization according to at least one dithering algorithm by adjusting a delay adjust signal based on a mean square error of equalized data signals.
Abstract:
A signal delay structure and method of reducing skew between clock and data signals in a high-speed serial communications interface includes making a global adjustment to the clock signal in the time domain to compensate for a component of the skew that is common between the clock and all data signals. This can include skew caused by the variation in frequency of the input clock from a nominal value, misalignment between the phase of the clock and data generated at the source of the two signals. The global adjustment is made through a delay component that is common to all of the clock signal lines for which skew with data signals is to be compensated. A second level adjustment is made that compensates for the component of the skew that is common to the clock and a subset of the data signals.
Abstract:
A high-speed bit stream data conversion circuit receives a first bit stream(s) and recovers a clock signal from the first bit stream(s). The data conversion circuit then produces a second bit stream(s) having a second lower bit rate. A control loop adjusts the phase relationship of the recovered clock signal to the first bit stream(s) to minimize data loss when the first bit stream(s) is sliced to produce the second bit stream(s). A reference clock signal produced within a clock circuit is divided to produce a reduced frequency reference clock, which is multiplexed with a test clock signal to produce an output signal. Differentially dividing the output signal produces a series of input signals for an interpolator that selectively weighs and sums the input signals as directed by the control loop to produce the recovered clock signal with the desired phase relationship relative to the first bit stream(s).
Abstract:
A method and apparatus for adaptively controlling a variable gain amplifier (VGA). The operation of the VGA is separated into a low gain mode and a high gain mode and the mode in which the VGA is currently operating in is adaptively sensed. A threshold voltage is compared to a control voltage of the VGA; if the VGA is currently operating in the low gain mode and the control voltage is higher than the threshold voltage, the VGA is switched from the low gain mode to the high gain mode; and if the VGA is currently operating in the high gain mode and the control voltage is lower than the threshold voltage, the VGA is switched from the high gain mode to the low gain mode.
Abstract:
Expansion of the bandwidth of a wideband CMOS data amplifier is accomplished using various combinations of shunt peaking, series peaking, and miller capacitance cancellation. These various combinations are employed in any of the amplifier input stage, in intermediate stages, or in the last stage.
Abstract:
A method and apparatus for adaptively controlling a variable gain amplifier (VGA). The operation of the VGA is separated into a low gain mode and a high gain mode and the mode in which the VGA is currently operating in is adaptively sensed. A threshold voltage is compared to a control voltage of the VGA; if the VGA is currently operating in the low gain mode and the control voltage is higher than the threshold voltage, the VGA is switched from the low gain mode to the high gain mode; and if the VGA is currently operating in the high gain mode and the control voltage is lower than the threshold voltage, the VGA is switched from the high gain mode to the low gain mode.
Abstract:
Various circuit techniques for implementing ultra high speed circuits use current-controlled CMOS (C3MOS) logic fabricated in conventional CMOS process technology. An entire family of logic elements including inverter/buffers, level shifters, NAND, NOR, XOR gates, latches, flip-flops and the like are implemented using C3MOS techniques. Optimum balance between power consumption and speed for each circuit application is achieve by combining high speed C3MOS logic with low power conventional CMOS logic. The combined C3MOS/CMOS logic allows greater integration of circuits such as high speed transceivers used in fiber optic communication systems. The C3MOS structure enables the use of a power supply voltage that may be larger than the voltage required by the CMOS fabrication process, further enhancing the performance of the circuit.
Abstract translation:用于实现超高速电路的各种电路技术使用以常规CMOS工艺技术制造的电流控制CMOS(C 3/4 MOS)逻辑。 包括逆变器/缓冲器,电平移位器,NAND,NOR,异或门,锁存器,触发器等的整个逻辑元件族都使用C 3 MOS技术实现。 通过将高速C“3”MOS逻辑与低功耗常规CMOS逻辑相结合,实现了每个电路应用的功耗和速度之间的最佳平衡。 组合的三极管/ CMOS逻辑允许诸如光纤通信系统中使用的高速收发器之类的电路的更大集成。 C 3 O 3 MOS结构能够使用可能大于CMOS制造工艺所需的电压的电源电压,进一步提高电路的性能。
Abstract:
The invention discloses a system for improving performance of the RF amplification stage of communication receivers by accounting for the signal environment of the RF amplifier. The linearity, gain and power supply voltage of the RF amplification stage of the communication receiver is adjusted to produce an optimal signal into the succeeding narrow-band amplification stage(s). The adjustment of the RF stage includes mechanisms such as adjusting the RF amplifier power supply level using a DC to DC converter. It also includes allowing distortion in the RF amplification stage if the distortion in the RF amplification stage does not affect the target signal. For example, if there were a strong signal that fell within the same band as the target signal, amplification would be allowed to be so high that it distorted the undesired signals, but not the tined signals. If the desired signal is the predominant signal, within the RF amplifier's band, then the amplifier gain may be increased only to the point where distortion is detected.