Abstract:
An internal combustion engine, in particular for a motor vehicle, which is provided with a fuel pump which can deliver fuel into a pressure reservoir. A control device is provided, which is connected to the fuel pump. The delivery quantity of the fuel pump can be changed and the fuel quantity supplied to the pressure reservoir can be adjusted to a required fuel quantity by influencing the delivery quantity of the fuel pump. The control device can control the delivery quantity of the fuel pump by a program map as a function of a number of input variables during the startup of the engine.
Abstract:
A fuel-supply system for an internal combustion engine, particularly of a motor vehicle. The fuel-supply system is provided with a pump for delivering fuel into a storage chamber and for producing a pressure in the storage chamber. In addition, provision is made for a pressure sensor for measuring an actual value of the pressure in the storage chamber, as well as a pressure-control valve for influencing the pressure in the storage chamber. A control unit is provided with means by which the pressure in the storage chamber is controllable to a setpoint value. In addition, the control unit is provided with means by which the closed-loop control of the pressure in the storage chamber is able to be superseded by an open-loop control.
Abstract:
A fuel injection system for internal combustion engines, having a high-pressure fuel pump which fills a high-pressure collection chamber with high fuel pressure. Injection lines lead away from the high pressure collection chamber to the individual injection valves. A prefeed pump that feeds fuel from a tank via a low-pressure line system into a work chamber of the high-pressure pump, and at least one control valve controls the high-pressure pumping quantity of the high-pressure pump. Control valves are inserted into the low-pressure line system that adjust the fuel filling flow into the work chamber of the high-pressure pump to the fill volume actually required for operation.
Abstract:
A fuel pump for a two-stroke internal combustion engines, having a pump chamber with an inlet valve for connecting to a fuel delivery pump. An outlet valve for connecting to an injection nozzle of the engine, and an axially driven pump piston which defines the pump chamber. For the purposes of a simple structural embodiment for reasonably priced manufacture and flexible fuel metering, a stop is provided, which defines the intake stroke of the pump piston and whose relative position to the bottom dead center of the pump piston can be controlled as a function of operating parameters of the engine.
Abstract:
The hydraulic setting device (10) has a differential cylinder (11) whose pressure spaces (14, 18) can each be acted upon by a pump (17). The pressure conduits (15) and (19) between the pump and the two pressure spaces (14) and (18) are connected to a control valve (31) by means of control conduits (29) and (33). A part pressure can be set in the pressure spaces (14) and (18) by spilling pressure medium by corresponding activation of the control valve.
Abstract:
The hydraulic setting device has a differential cylinder (11) whose annular space (14) is continually subjected to pressure by a pump (16). The pressure space (18) at the large piston surface is connected to the pump via a connection conduit (41). A conduit branch, which leads to a control valve (21), emerges from this connection conduit (41). At the other end, this control valve is in connection with a return conduit (26). The pressure in the conduit branch (19), and therefore in the pressure spaces (14, 18) of the differential cylinder, can be varied by appropriate activation of the control valve.
Abstract:
A fuel injection pump of a distributor type for internal combustion engines including, a pump plunger guided within a pump cylinder, which forms a pump chamber and which is driven to perform reciprocating and rotating motion by a driving gear which is submerged in a lubricating oil bath. The pump plunger has a distribution hole which is in contact with the pump chamber and which sequentially links this chamber, during the compression stroke of the pump plunger, to injection jets. The fuel filling of the pump chamber takes place via a magnetically operated valve, which is open during the intake stroke and closed during the compression stroke of the pump plunger. For an enlargement of the filling cross-section during the intake stroke without an enlargement of the opening of the magnetically operated valve, a relief hole in the pump plunger is used which serves a force balancing during the compression stroke and which during the intake stroke links up with a filling hole which is connected with a membrane reservoir.
Abstract:
A fuel injection pump for internal combustion engines has a pump piston, defining a pump work chamber for generating an injection pressure; an electromagnetic control device for fixing the duration of supply during the supply stroke of the pump piston and a measuring device, which measures the return flow fuel quantity that did not attain injection during the supply stroke of the pump piston and emits an electronic return flow quantity signal (Q.sub.R). An electronic control unit imposes control signals (.phi..sub..mu.V) upon the control device as a function of the return flow quantity signal (Q.sub.R) and operating characteristics of the engine. To attain highly accurate closed-loop control of the fuel injection quantity, a fluctuation detector is provided, which detects fluctuations in the return flow quantity signal and emits the appearance of fluctuations over time in the form of detection signals (.phi..sub.A, .phi..sub.E, .phi..sub.1 -.phi..sub.4). The control unit corrects the imposition of the control signals (.phi..sub..mu.V) as a based on these detection signals.
Abstract:
A valve control arrangement for internal combustion engines with reciprocating pistons, comprises a housing having a housing opening, a valve piston axially displaceable in the housing opening, a valve closing spring, a valve plunger on which the valve piston acts against the valve closing spring, a cam piston axially displaceable in the housing opening, a valve control cam, a pressing spring which presses the cam piston against the valve control cam, a working chamber formed between the valve piston and the cam piston and arranged to be filled with pressure medium which transmits a lifting movement of the cam piston to the valve piston, the pressing spring which acts on the cam piston being arranged outside of the working chamber and supported at the side of the housing.
Abstract:
A magnetic valve, in particular a fuel metering valve for fuel injection systems of internal combustion engines, is proposed which serves to measure the injection quantity and control the instant of injection. In a valve housing, the magnetic valve has an electromagnet and a valve closing element actuated thereby, which cooperates with a fixed valve seat. To damp the opening movement of the valve closing element against a fixed stop and to keep the hydraulic forces of adhesion between the valve closing element and the stop low, a damping chamber that is open toward the valve closing element is disposed on the stop. As the valve closing element approaches, fluid is positively displaced out of the damping chamber in the form of a squish flow between the stop face and the head element of the valve closing element, so that recoiling is avoided due to thus-generated damping. As the valve closing element lifts, fluid can flow through a throttle bore or a check valve into the damping chamber, so that release of the valve closing element from the stop face can be effected with little force being exerted.