Abstract:
An ASIC includes a first-wire extended in a first-direction and a second-wire extended in a parallel direction to the first-wire and both are placed on a first-wire layer; and a third-wire placed on a second-wire layer above the first-wire layer and is extended above the wire and above the second-wire in a second-direction which intersects the first-direction and passing through a first via-hole is connected to the first-wire, and a fourth-wire separated from the third-wire extended in a parallel direction above the first-wire and above the second-wire and a fifth-wire separated from both the third-wire and the fourth-wire and extended in a parallel direction in a smallest space and passing through a second via-hole is connected to the second-wire, wherein, one end of the fifth-wire is extended to the center between the second-wire and the first-wire from above the second-wire.
Abstract:
A semiconductor memory device includes a memory cell array, data buffer, and column switch. The data buffer senses the potential of a bit line to determine data in a selected memory cell and hold readout data in a read. The data buffer detects both whether the whole data buffer holds “0” data and whether the whole data buffer holds “1” data. The column switch selects part of the data buffer and connects the part to a bus.
Abstract:
A semiconductor memory device including: a cell array with electrically rewritable and non-volatile memory cells arranged therein; a sense amplifier circuit configured to read data of and write data into the cell array; and a controller configured to control read, write and erase of the cell array, wherein the controller executes an erase sequence for erasing a selected block in the cell array in response to erase command and address input in such a way of: executing a first erase-verify operation for verifying an erase state of the selected block; ending the erase sequence if the erase state of the selected block has been verified by the first erase-verify operation; whereas executing an erase operation for the selected block if the erase state has not been verified.
Abstract:
A semiconductor integrated circuit device comprises several blocks including a word line connected with a memory cell, a row decoder selecting the word line, and a block decoder selecting the block. The block decoder includes a logical address register holding logical block address corresponding to the several blocks and a block status register holding a block status. The block decoder selects a block in which input block address and input block status match with held logical block address and held block status, respectively.
Abstract:
A memory system includes a memory cell array, a bit line switch, first and second page buffers, a column switch, an error correction circuit, and control circuits. The second page buffer can swap data with the first page buffer. The control circuits controls the bit line switch and the first and second page buffers, sequentially reads, page by page, one or more pages from the mth (m is a positive integer) page to the nth (n is an integer greater than m) page of the first block in the memory cell array, controls the error correction circuit to perform error correction calculation by the error correction circuit, controls the first and second data buffers and the bit line switch, and controls to perform write in the second block in the erase state in the memory cell array.
Abstract:
A non-volatile semiconductor memory device includes: a cell array having electrically rewritable and non-volatile memory cells arranged therein; and a sense amplifier circuit configured to detect voltage change of a bit line in the cell array, thereby reading data of a selected memory cell coupled to the bit line, wherein the sense amplifier circuit is controlled to read data at plural timings within a period in which the bit line voltage is changing in correspondence with the selected memory cell, and compare data read out by successive two data read operations with each other so as to judge a threshold margin of the selected memory cell.
Abstract:
A semiconductor integrated circuit device includes first to fourth bit lines and a redundant bit line, first to fourth column gate transistors and a redundant column gate transistor coupled to each of the first to fourth bit lines and the redundant bit lines, first to fourth column select lines and a redundant column select line coupled to each of the first to fourth column gate transistors and the redundant column gate transistor. The second column select line passes through the first bit line. The third column select line passes through the first and second bit lines. The fourth column select line passes through the first, second and third bit lines. The redundant column select line passes through the first, second, third and fourth bit lines.
Abstract:
A non-volatile semiconductor memory device according to the invention comprises a memory cell array having a plurality of non-volatile memory cells, and a write state machine controlling a voltage applied to a memory cell selected from the memory cell array and a voltage application period, in accordance with each of reading of data from the selected memory cell, writing of data into the selected memory cell, and erasion of data from the selected memory. The write state machine executes writing, under a first writing condition, on a predetermined number of memory cells included in the memory cell array, and executes writing on memory cells other than the predetermined number of memory cells, under a second writing condition set in accordance with a result of the writing executed under the first writing condition.
Abstract:
A non-volatile semiconductor memory device according to the invention comprises a memory cell array having a plurality of non-volatile memory cells, and a write state machine controlling a voltage applied to a memory cell selected from the memory cell array and a voltage application period, in accordance with each of reading of data from the selected memory cell, writing of data into the selected memory cell, and erasing of data from the selected memory. The write state machine executes writing, under a first writing condition, on a predetermined number of memory cells included in the memory cell array, and executes writing on memory cells other than the predetermined number of memory cells, under a second writing condition set in accordance with a result of the writing executed under the first writing condition.
Abstract:
A semiconductor integrated circuit device according to the present invention includes a booster circuit 1 for raising an external power supply voltage Vccext, a level detecting circuit 2 for detecting fluctuation in a stepped-up voltage Vccint2, an internal voltage generating circuit 3 for generating an internal voltage Vccint on the basis of the stepped-up voltage Vccint2, an address buffer 4, an address decoder 5, and a memory cell array 6 of an EEPROM structure. The level detecting circuit 2 includes a first level detecting part for performing level detection during a memory access state, and a second level detecting part for performing level detection during a stand-by state. During the stand-by state, the internal voltage generating circuit 3 short-circuits the stepped-up voltage Vccint2 and the internal voltage Vccint. The second level detecting part has lower power consumption than that of the first level detecting part, so that it is possible to reducing the power consumption during the stand-by state without lowering the driving voltage.