Abstract:
Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1-a-b-cYaTbbAc)3(Al1-dBd)5(O1-eCe)12:Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0≦a≦1; 0≦b≦1; 0
Abstract:
Disclosed are LED-based lighting arrangements that include an integrated lighting component that includes both a photoluminescence wavelength conversion portion and a diffusing portion. The integrated lighting component can be used to implement low-profile lighting arrangements having very small installation space requirements.
Abstract:
Embodiments of the present invention are directed to nitride-based, red-emitting phosphors in red, green, and blue (RGB) lighting systems, which in turn may be used in backlighting displays and warm white-light applications. In particular embodiments, the red-emitting phosphor is based on CaAlSiN3 type compounds activated with divalent europium. In one embodiment, the nitride-based, red emitting compound contains a solid solution of calcium and strontium compounds (Ca,Sr)AlSiN3:Eu2+, wherein the impurity oxygen content is less than about 2 percent by weight. In another embodiment, the (Ca,Sr)AlSiN3:Eu2+ compounds further contains a halogen in an amount ranging from about zero to about 2 atomic percent, where the halogen may be fluorine (F), chlorine (Cl), or any combination thereof. In one embodiment at least half of the halogen is distributed on 2-fold coordinated nitrogen (N2) sites relative to 3-fold coordinated nitrogen (N3) sites.
Abstract:
A white light illumination system may comprise: a phosphor package; a first radiation source for providing co-excitation radiation to the phosphor package, the source emitting in wavelengths ranging from about 250 nm to about 410 nm; and a second radiation source for providing co-excitation radiation to the phosphor package, the source emitting in wavelengths ranging from about 410 nm to about 540 nm; wherein the phosphor package is configured to emit photoluminescence in wavelengths ranging from about 440 nm to about 700 nm upon co-excitation from the first and second radiation sources, and wherein the phosphor package comprises at least one narrow band green phosphor with a photoluminescence peak with a full width at half maximum of less than 60 nm, and wherein the narrow band green phosphor is configured to emit photoluminescence in wavelengths ranging from about 500 nm to about 550 nm.
Abstract:
Embodiments concern various LED-based lighting arrangements, such as for use in downlights or area lights, with increased light efficacy by utilizing a light reflective component to define a light reflective mixing chamber that is substantially frusto-conical, frusto-pyramidal, hemispherical, or paraboloidal. The reflective component may be single-piece component configured to fit within a pre-existing housing and placed between the LEDs and a wavelength conversion component.
Abstract:
A green-emitting phosphor having the formula AaBbCcOdNe,:RE, wherein A is a positively charged divalent element; B is a positively charged trivalent element; C is a positively charged tetravalent element; and RE is a rare earth activator. The parameter a ranges from about 0.5 to about 1.5; the parameter b ranges from about 0.8 to about 3.0; the parameter c ranges from about 3.5 to about 7.0; the parameter d ranges from about 0.1 to about 3.0; and the parameter e ranges from about 5.0 to about 11.0. A is at least one of Mg, Ca, Sr, Ba, and Zn; B (the letter) is at least one of B (boron), Al, Ga, and In; C (the letter) is at least one of C (carbon), Si, Ge, and Sn; O is oxygen; N is nitrogen; and RE is at least one of Eu, Ce, Pr, Tb, and Mn.
Abstract:
A light emitting device comprises: a thermally conductive substrate (MCPCB); at least one LED mounted in thermal communication with a surface of the substrate; a housing attached to the substrate and configured such the housing and substrate together define a volume that totally encloses the at least one LED, the housing comprising at least a part that is light transmissive (window); and at least one phosphor material provided on an inner surface of the housing within said volume said phosphor being operable to absorb at least a part of the excitation light emitted by the at least one light emitting diode and to emit light of a second wavelength range. The housing is attached to the substrate such that the volume is substantially water tight, preferably air/gas tight.
Abstract:
A solid-state linear lamp comprises a co-extruded component, the co-extruded component comprising an elongate lens and a layer of photoluminescent material. The elongate lens is for shaping light emitted from the lamp and comprises an elongate interior cavity. The layer of a photoluminescent material is located on an interior wall of the elongate interior cavity. The lamp further comprises an array of solid-state light emitters configured to emit light into the elongate interior cavity.
Abstract:
The teachings are generally directed to phosphors having combination coatings with multifunctional characteristics that increase the performance and/or reliability of the phosphor. The teachings include highly reliable phosphors having coatings that contain more than one inorganic component, more than one layer, more than one thicknesses, more than one combination of layers or thicknesses, a gradient-interface between components, a primer thickness or layer to inhibit or prevent leaching of phosphor components into the coatings, a sealant layer to inhibit or prevent entry of moisture or oxygen from the environment, a mixed composition layer as a sealant and multifunctional combination coatings.