Abstract:
A method for identification and/or characterization of a microbial agent present in a sample includes a step of analytical test data (e.g., obtaining intrinsic fluorescence values over a range of emission wavelengths) from the microbial agent. The analytical test data is transformed thereby minimizing strain to strain variations within an organism group. With the aid of a programmed computer, a multi-level classification algorithm coded as a set of processing instructions operates on the transformed analytic test data. The multiple levels correspond to different levels in a taxonomic hierarchy for microbial agents suspected of being in the sample.
Abstract:
The present invention relates to methods and systems for scanning, detecting, and monitoring microorganisms on solid or semi-solid media using intrinsic fluorescence (IF) measurements. The methods are further directed to detection, characterization and/or identification of microorganisms on a solid or semi-solid media using intrinsic fluorescence (IF) measurements that are characteristic of said microorganisms.
Abstract:
A method of testing a specimen sample contained within a sealed specimen container. A test sample is removed from the specimen container with a disposable sampling device. Non-microbial agent components of the test sample are lysed, thereby producing a lysed sample. The lysed sample is delivered to a disposable separation device. A microbial agent present in test sample is concentrated within the disposable separation device. The concentrated microbial agent is interrogated, e.g., spectroscopically.
Abstract:
The present invention provides a method and system for monitoring, detecting, and/or characterizing a biological particle that may be present in a sample. The method may be accomplished in a sealed container by utilizing a first step time-dependent spectroscopic technique to obtain at least two measurements of a growth composition comprising a sample and correlating said measurements for the detection and/or characterization of a biological particle that may be present in the sample. The method further provides for a subsequent step for the separation, characterizion and/or identification of the microorganisms in the sealed container.
Abstract:
The present invention is directed to a separation device or container that can be used in the separation, isolation or pelleting of microorganisms from a test samples known to contain or suspected of containing said microorganisms. Subsequently, the separated, isolated or pelleted microorganism sample can undergo one or more interrogation steps to provide measurements useful for the characterization and/or identification of microorganism. In one aspect of the present invention, the interrogation steps can occur in situ in the separation device or container described herein.
Abstract:
The present invention provides a method and system for monitoring, detecting, and/or characterizing a biological particle that may be present in a sample whereby the method may be accomplished non-invasively by utilizing a time-dependent spectroscopic technique to obtain at least two measurements of a growth composition comprising a sample and correlating said measurements for the detection and/or characterization of a biological particle, that may be present in the sample.
Abstract:
A device and method allow for detecting the presence of microorganisms in clinical and non-clinical specimens. The device, a sensor, provides an environment to culture microbial organism colonies from a fluid sample, and a means to facilitate microbial detection and quantification, either manually or with an instrument. The sensor has a microorganism immobilization matrix layer and a sensor layer. Detected microbial colonies are immediately available for further testing. The sensor provides an area for accepting a fluid sample, a mechanism to immobilize the fluid sample on an interior surface of the plate, nutrients to facilitate growth of microorganisms in the sample, and a sensor for allowing the detection and/or enumeration of microorganism colonies within the sample.
Abstract:
A device and method allow for collection of a blood specimen and for detecting the presence of microorganisms in the blood specimen. The device, a sensor plate under vacuum, provides an environment to culture microbial organism colonies from a blood sample, and a means to facilitate microbial detection and quantification, either manually or with an instrument. The vacuum sensor plate has a microorganism immobilization matrix layer and a sensor layer. Detected microbial colonies are immediately available for further testing. A kit is provided having a needle assembly for direct draw of blood from a patient onto the immobilization layer within the vacuum sensor plate. The sensor plate provides an area for accepting a blood sample, a mechanism to immobilize the blood sample on an interior surface of the plate, nutrients to facilitate growth of microorganisms in the sample, and a sensor layer for allowing the detection and/or enumeration of microorganism colonies within the blood sample.
Abstract:
This invention relates to a novel reagent and a method of using the reagent in an immunoassay to detect antigens, particularly antigens immunocomplexed with their corresponding or cross-reacting antibodies. In particular, this reagent and method increase the detection of human immunodeficiency virus HIV-1 p24 core antigen.
Abstract:
A CROSS-LINKABLE COMPOSITION WHICH COMPRISES A THERMOPLASTIC POLYMER CONTAINING AROMATIC RESIDUES IN THE POLYMER CHAIN, THE POLYMER ISELF CONTAINING PER CHAIN AT LEAST TWO GROUPS OF THE FORMULA -SO2X EACH ATTACHED DIRECTLY TO AN AROMATIC CARBON ATOM, X BEING, FOR EXAMPLE, CHLORINE OR BROMINE.