Abstract:
Provided is an apparatus for managing events in a virtual world. The apparatus includes: an event detecting unit monitoring a virtual world and detecting an event which occurs in the virtual world; a snapshot managing unit generating snapshots of developments of the event; and a control unit providing each of the generated snapshots in real time.
Abstract:
Provided is a method of managing memory in a multiprocessor system on chip (MPSoC). According to an aspect of the present invention, locality of memory can be reflected and restricted memory resources can be efficiently used by determining a storage location of a variable or a function which corresponds to a symbol with reference to a symbol table based on memory access frequency of the variable or the function, comparing the determined storage location and a previous storage location, and copying the variable or the function stored in the previous storage location to the determined storage location if the determined storage location is different from the previous storage location.
Abstract:
Provided is a method and apparatus for preventing a stack overflow in an embedded system. The method of preventing a stack overflow includes: reading a maximum stack usage of at least one function for executing a requested operation from maximum stack usages of functions provided from a kernel, which are stored in advance; and processing the requested operation on the basis of the read maximum stack usage of the at least one function and a size of a usable region in a stack for the requested operation. Accordingly, the stack overflow can be prevented without generating a run-time overhead.
Abstract:
A scheduling method, medium and apparatus are provided. In the scheduling method, medium and apparatus, it is possible to prevent the possibility that the order between the priorities of the tasks represented by the expired timers and the tasks requested by the interrupt is reversed while also not deteriorating the performance of a real time operating system (RTOS), even though the number of timers expired when the interrupt occurs or that are already expired before the interrupt occurs is large, by selecting a timer for representing a point of time corresponding to a point of time when an interrupt occurs from among one or more timers each of which representing a task, a point of time assigned to the tasks, and a priority assigned to the task and executing a task represented by the selected timer and one or more tasks requested by the interrupt in order of priority.
Abstract:
A method of reducing a code size of a program by controlling a control flow of the program using software in a computer system is disclosed. The method includes the steps of storing a first program count of a first instruction in a first buffer when an error occurs while the first instruction having an Operand including Offset and Length is being executed among a plurality of instructions loaded in the code memory, changing a current program count of the code memory to a second program count which is obtained by adding the Offset to the first program count, storing a second instruction, which is located at a position shifted from the second program count by a value of the Length, in a second buffer, replacing the second instruction with a third instruction, which is not recognized by a microprocessor, replacing the third instruction with the second instruction stored in the second buffer when an error occurs while the third instruction is being executed, and changing the current program count of the code memory to a predetermined program count next to the first program count stored in the first buffer.
Abstract:
Provided is a method and apparatus for preventing a stack overflow in an embedded system. The method of preventing a stack overflow includes: reading a maximum stack usage of at least one function for executing a requested operation from maximum stack usages of functions provided from a kernel, which are stored in advance; and processing the requested operation on the basis of the read maximum stack usage of the at least one function and a size of a usable region in a stack for the requested operation. Accordingly, the stack overflow can be prevented without generating a run-time overhead.
Abstract:
A scheduling method, medium and apparatus are provided. In the scheduling method, medium and apparatus, it is possible to prevent the possibility that the order between the priorities of the tasks represented by the expired timers and the tasks requested by the interrupt is reversed while also not deteriorating the performance of a real time operating system (RTOS), even though the number of timers expired when the interrupt occurs or that are already expired before the interrupt occurs is large, by selecting a timer for representing a point of time corresponding to a point of time when an interrupt occurs from among one or more timers each of which representing a task, a point of time assigned to the tasks, and a priority assigned to the task and executing a task represented by the selected timer and one or more tasks requested by the interrupt in order of priority.
Abstract:
A synchronization scheduling apparatus and method in a real-time multi-core system are described. The synchronization scheduling apparatus may include a plurality of cores, each having at least one wait queue, a storage unit to store information regarding a first core receiving a wake-up signal in a previous cycle among the plurality of cores, and a scheduling processor to schedule tasks stored in the at least one wait queue, based on the information regarding the first core.
Abstract:
A method, medium and apparatus for storing and restoring a register context for a fast context switching between tasks is disclosed. The method, medium and apparatus may improve overall operating speed of a system by increasing the speed of context switching. The method may include adding an update code for updating information of live registers to a task file that includes a code of a task to perform a specified function, converting the task file having the update code added thereto into a run file, updating the information of the live registers with the update code during running of the task using the run file, and storing a live register context according to the updated information of the registers.
Abstract:
Described herein is a flash memory apparatus and method controlling the same. The flash memory apparatus includes a processor and one or more flash memory units. The processor controls one or more memory operations performed in the one or more flash memory units. The processor stops controlling a memory operation in a flash memory unit when the memory operation is performed, and continues performing the memory operation in the flash memory unit when the flash memory unit generates an interrupt signal.