Abstract:
The present invention discloses a transistor for a semiconductor device capable of preventing the generation of a depletion capacitance in a gate pattern due to the diffusion of impurity ions. The present invention also discloses a method of fabricating the transistor.
Abstract:
An at least penta-sided-channel type of FinFET transistor may include: a base; a semiconductor body formed on the base, the body being arranged in a long dimension to have source/drain regions sandwiching a channel region, at least the channel, in cross-section transverse to the long dimension, having at least five planar surfaces above the base; a gate insulator on the channel region of the body; and a gate electrode formed on the gate insulator.
Abstract:
An at least penta-sided-channel type of FinFET transistor may include: a base; a semiconductor body formed on the base, the body being arranged in a long dimension to have source/drain regions sandwiching a channel region, at least the channel, in cross-section transverse to the long dimension, having at least five planar surfaces above the base; a gate insulator on the channel region of the body; and a gate electrode formed on the gate insulator.
Abstract:
Methods of preparing improved semiconductor substrates having gate oxide layers formed thereon, and use of such substrates in fabricating improved semiconductor devices, are disclosed. The methods include a first step of performing a cleaning process for removing a natural oxide layer formed on a semiconductor substrate and also for removing an oxide layer generated by the removal of the natural oxide layer; a second step of executing a hydrogen annealing process to form a hydrogen passivation layer and for further reducing a surface roughness of the semiconductor substrate completed in the cleaning process; a third step of forming a gate oxide layer thereon; a fourth step of performing a nitridation process on the gate oxide layer to prevent the semiconductor substrate from a permeation of ions during a subsequent gate electrode formation step; and, a fifth step of performing a subsequent thermal process to stabilize a surface of the gate oxide layer, thereby improving a defect rate of the device caused in forming the gate oxide layer.