Abstract:
A a dual element magnetoresistive sensor that uses the longitudinal field produced by the sense/bias currents to initialize the elements into a stable antiparallel state. The dual element magnetoresistive sensor comprises two magnetoresistive elements having first and second conductors coupled thereto. The first and second conductors are oriented in the same direction as the magnetoresistive elements in their contact areas. A third conductor is disposed between and coupled to the two magnetoresistive elements at their opposite ends. The third conductor is oriented transverse to the directions of the first and second sensor elements, and is adapted to conduct current therethrough in a direction transverse to the currents conducted by the first and second conductors. Currents conducted by all three conductors self-initialize the magnetoresistive elements into a single domain state. Also, the current flowing in the third conductor creates an anti-parallel longitudinal field in the two sensor elements that is oriented in the same direction as closure fields present in the magnetoresistive elements. These fields ensure that a single domain state is produced in the magnetoresistive elements. An alternative design for the third conductor employs one conductor portion that provides a current distribution that initializes the sensor. This current distribution initializes the sensor. Another conductor portion is used during reading and provides a current distribution that is similar to the distribution produced by the first and second conductors. This ensures that the across-the-track response is symmetric. A small fraction of the sense current flows in the initializing conductor portion to provide stabilization during reading.
Abstract:
A solid-state memory including an array of magnetic storage cells and a set of conductors. The process steps that pattern the conductors also patterns the magnetic layers in the magnetic storage cells thereby avoiding the need to employ precise alignment between pattern masks.
Abstract:
An equal potential may be applied to a selected bit line and unselected bit lines during a read operation on a memory cell in a resistive cross point array. In the alternative, an equal potential may be applied to the selected bit line and unselected word lines.
Abstract:
Data is written to a memory cell of a Magnetic Random Access Memory ("MRAM") device by supplying currents having substantially unequal magnitudes to word and bit lines crossing that memory cell. The substantially higher magnitude current may be supplied to the word lines.
Abstract:
A magnetoresistive transducer includes at least one magnetoresistive element having a transverse easy axis. The use of a transverse easy axis prevents magnetic domains from forming in the magnetoresistive elements and results in a noise-free device. Various techniques for producing a transverse easy axis include the use of stress, and a magneto strictive material, during the formation of the element to orient the anisotropy of the element transverse to orient the anisotropy of the element transverse to the element, formation of the element in the presence of a magnetic field, high temperature anneal of the element, or any other method of forming the element with a prebiased state.
Abstract:
A method for reducing Barkhausen noise in dual stripe magnetoresistive recording heads. The topography of the bottom conductor is controlled, specifically the conductor sidewall angle at the edge of the track is defined to be less than 45.degree. from the substrate plane. Restricting the conductor sidewall profile in this manner eliminates sources of magnetic domain nucleation.