Abstract:
A robust recording head with a spin tunneling sensing element separated from an interface between the recording head and a recording media so as not to be affected by collisions and other ill effects at the interface between the recording head and the recording media. The spin tunneling sensing element includes a pair of magnetic elements wherein one of the magnetic elements functions as a flux guide that conducts magnetic flux emanating from the recording media away from the interface to an active area of the spin tunneling sensing element.
Abstract:
A spin dependent tunneling (“SDT”) junction of a memory cell for a Magnetic Random Access Memory (“MRAM”) device includes a pinned ferromagnetic layer, followed by an insulating tunnel barrier and a sense ferromagnetic layer. During fabrication of the MRAM device, after formation of the pinned layer but before formation of the insulating tunnel barrier, an exposed surface of the pinned layer is flattened. The exposed surface of the pinned layer may be flattened by an ion etching process.
Abstract:
A solid-state memory including an array of magnetic storage cells and a set of conductors. The process steps that pattern the conductors also patterns the magnetic layers in the magnetic storage cells thereby avoiding the need to employ precise alignment between pattern masks.
Abstract:
Data is written to a memory cell of a Magnetic Random Access Memory ("MRAM") device by supplying currents having substantially unequal magnitudes to word and bit lines crossing that memory cell. The substantially higher magnitude current may be supplied to the word lines.
Abstract:
A solid-state memory including an array of magnetic storage cells and a set of conductors. The solid-state memory includes circuitry for reducing leakage current among the conductors thereby increasing signal to noise ratio during read operations.
Abstract:
A solid-state memory including an array of magnetic storage cells and a set of conductors. The process steps that pattern the conductors also patterns the magnetic layers in the magnetic storage cells thereby avoiding the need to employ precise alignment between pattern masks.
Abstract:
A method of forming a display is provided, wherein the method includes forming a first electrode layer on a first substrate, forming an organic light emitting diode (OLED) stack on the first electrode, forming a second electrode layer over the OLED stack, and forming a bonding layer over the second electrode layer, wherein the bonding layer comprises a conductive material. The bonding layer and the second electrode layer are patterned to form a plurality of micro-OLEDs, wherein the patterning is performed by removing a portion of the bonding layer and the second electrode layer. The plurality of micro-OLEDs on the first substrate is joined to a plurality of pixels in an electronic backplane on a second substrate, wherein any one pixel in the electronic backplane can couple to a varied subset of micro-OLEDs in the plurality of micro-OLEDs.
Abstract:
An emissive semi-interpenetrating polymer network (E-semi-IPN) includes a semi-interpenetrating polymer network and an emissive material interlaced in the polymer network. The semi-interpenetrating polymer network includes in a crosslinked state one or more of a polymerized organic monomer and a polymerized organic oligomer, polymerized water soluble polymerizable agent, and one or more polymerized polyfunctional cross-linking agents. The E-semi-IPN may be employed as an E-semi-IPN layer (16, 36, 56) in organic light emitting devices (10, 20, 30, 40).
Abstract:
A smart helmet included integrated electronics providing safety and convenience features. Helmet features includes a global locating system, an environmental interaction sensor, a mobile communications network device, a small display panel, a microphone and at least one speaker. The helmet is aware of the user's location and interactions with the environment. The helmet can provide data to a user, monitor the user's actions and condition, and send information to others about user's location and condition.
Abstract:
A magnetoresistive sensor having a longitudinal field that is produced along its axis and that stabilizes the sensor. The longitudinal field is produced by the current in conductors that are connected to the magnetoresistive sensor elements. By controlling the direction and distribution of the current in the conductors, a longitudinal field is produced that has the required direction and magnitude to stabilize the single domain state of the sensor. The resulting lack of domain wall motion in the sensor during operation prevents instabilities in its electrical output, commonly known as Barkhausen noise. Four different sensor designs are provided that include two single element sensors with two conductors, a dual element sensor with four conductors, and a dual element sensor with three conductors. The ease of implementation makes the stabilized sensor of the present invention superior to conventional approaches that rely on permanent magnets or exchange coupled layers to provide longitudinal bias.