Abstract:
An amplifier having DC offset compensation includes at least one input node and a pair of differential output nodes, a biasing circuit coupled to the input node; and a plurality of current sources. Selected ones of said current sources are coupled to the input node to adjust a DC voltage at the input node to provide DC offset compensation for the amplifier
Abstract:
In one embodiment, an amplifier circuit has at least one branch and current-source circuitry providing a tail current to the branch, which has at least one load tank, at least one input transistor coupled to the load tank, and variable-impedance circuitry coupled between an input node of the amplifier circuit and the gate of the input transistor. The transconductance of the input transistor can be altered to achieve two or more different gain settings for the amplifier circuit. The variable-impedance circuitry can be controlled to contribute any one of at least two different levels of impedance to the overall input impedance of the amplifier circuit. If the transconductance of the input transistor is reduced, then the variable-impedance circuitry can increase the level of impedance contributed to the overall input impedance of the amplifier circuit such that the overall input impedance of the amplifier circuit remains substantially unchanged.
Abstract:
A voltage controlled oscillator unit is provided with cross coupled voltage controlled oscillators to generate quadrature phases. One control stage adjusts coupling between the oscillators. Another control stage adjusts the tail current that applies operating bias to the oscillators and to the couplers, respectively. The cross coupling and tail current control stages are arranged so that tuning one simultaneously and oppositely tunes the other for simultaneous adjustment in opposite directions. This limits the power consumption of the oscillator unit throughout the range of frequency control.
Abstract:
A wideband amplifier having an amplifier input terminal and an amplifier output terminal includes at least one transistor coupled to the amplifier input terminal and an impedance element coupled between the amplifier input terminal and the amplifier output terminal. A feedback signal is transmitted between the amplifier output terminal and the amplifier input terminal by way of the impedance element wherein the feedback signal varies in accordance with changes in an impedance of the impedance element so as to peak a frequency response of the amplifier.
Abstract:
A high sensitivity optical system for detection of chemical and biological analytes is disclosed comprising a vessel containing the chemical and biological analytes, a light-guide inside the vessel but separated from the vessel by the chemical and biological analytes, one or more excitation light sources at one end of the vessel, a detector at another end of the vessel, one or more excitation filters between the excitation light sources and the vessel, one or more emission filters between the vessel and the detector, and light directing components. The novel optical system is secured in a housing and connected to devices extrinsically or intrinsically for data input, process, display, storage, and communication. This optical system could enable clinical level diagnosis of a wide range of diseases in an inexpensive mobile point-of-care format. Furthermore, the form factor of the optical system can be significantly reduced to form a highly integrated lab-on-a-chip system.
Abstract:
A high sensitivity optical system for detection of chemical and biological analytes is disclosed comprising a vessel, a light-guide, analytes, excitation light source(s), a detector, excitation and emission filter(s), and light directing components. The novel optical system is secured in housing and connected to devices extrinsically or intrinsically for data input, process, display, storage, and communication. This optical system could enable clinical level diagnosis of a wide range of diseases in an inexpensive mobile point-of-care format. It can be a stand alone unit with single or an array of optical structures, or used in combination with other detection systems such as mobile microscope to form a qualitative and quantitative detection apparatus. It can also be implemented in some commercial instruments to improve sensitivities. Furthermore, the form factor of the optical system can be significantly reduced to form a highly integrated lab-on-a-chip solution.
Abstract:
It discloses an acoustic channel-based data communications method which performs channel coding on an original data signal using a CRC coding method and a BCH coding method to obtain a coded sequence; modulates the coded sequence using a preset audio sequence symbol set via a symbol mapping method to obtain a digital audio signal; selects a channel frequency band according to characteristics of a transmitting equipment and interference between frequency bands; and converts the digital audio signal into an analog audio signal through a digital-to-analog converter and transmits the signal to a channel for transmission according to the selected channel frequency band.
Abstract:
It discloses an acoustic channel-based data communications method which performs channel coding on an original data signal using a CRC coding method and a BCH coding method to obtain a coded sequence; modulates the coded sequence using a preset audio sequence symbol set via a symbol mapping method to obtain a digital audio signal; selects a channel frequency band according to characteristics of a transmitting equipment and interference between frequency bands; and converts the digital audio signal into an analog audio signal through a digital-to-analog converter and transmits the signal to a channel for transmission according to the selected channel frequency band.
Abstract:
Disclosed is an orthogonal frequency division multiplexing (OFDM)-based acoustic communications system. At an acoustic transmitting end, original data is modulated through channel coding into an acoustic signal of a data frame formed by multiple OFDM symbols and the acoustic signal is transmitted through a loudspeaker; at an acoustic receiving end, after a microphone receives the acoustic signal, and the acoustic signal is restored to the original data through demodulation and channel decoding. In a communication process, symbol synchronization is implemented through pilot information, and data frame synchronization is implemented in a manner of inserting baker codes, thereby simplifying processing, having a low bit error rate, improving acoustic communication efficiency, promoting development of acoustic communication, and having a good application prospect.
Abstract:
A passive mixer includes a transconductance amplifier having a source degeneration capacitance. The transconductance amplifier has an input for receiving an input signal and an output for outputting a current signal. A multiplier is provided for mixing a local oscillator signal with the current signal so as to provide an output signal at an output of the passive mixer. A capacitive load is connected to the output of the passive mixer.