Abstract:
The present invention provides novel serum-free cell culture medium and methods for cultivating MDCK cells. In particular, non-tumorigenic MDCK cells. The present invention also provides methods for producing influenza viruses (e.g., particularly cold-adapted, and/or temperature sensitive, and/or attenuated influenza viruses) that eliminate the need for a cell culture medium exchange step. The novel medium and methods are useful to grow influenza viruses, in cell culture to high titer. The present invention further provides purification methods for purifying influenza viruses with high overall recovery of live virus and result in levels of host cell DNA (HCD), host cell protein (HCP) and non-specific endonuclease (e.g., Benzonase), which are below the specifications required by regulatory agencies. The immunogenic compositions can be used to actively immunize subjects or to generate antibodies for a variety of uses, including passive immunization and diagnostic immunoassays.
Abstract:
Certain embodiments of the invention provide systems and methods for the automated assembly of DNA sequence data into contiguous DNA segments using a computer a system. DNA sequence data is entered into the system. The system indexes and groups a plurality of DNA fragment reads utilizing an anchor sequence and consolidates the fragments into larger sequences by merging the fragment reads within a group.
Abstract:
A portion of a video frame is transferred via a memory burst transfer, from memory to an on-chip buffer. The on-chip buffer has a width that is the same as the memory burst width for the memory. Video processing is performed upon the transferred portion. Other embodiments are also described and claimed.
Abstract:
A method and apparatus for hardware-based anamorphic video scaling. In one embodiment, the method includes the fetch of zero or more new input pixels according to an entry of an input control memory corresponding to a current output pixel. Once fetched, the zero or more new input pixels replace at least one stored input pixel of N, input pixels. Using the updated N, input pixels and an N, coefficient set selected according to an entry of a coefficient memory corresponding to the current output pixel, a pixel computation, such as, for example, an anamorphic scaling computation, is performed. In one embodiment, the anamorphic scaling is performed by subdividing an X×Y pixel frame into X/M M×Y pixel subframes. Other embodiments are described and claimed.
Abstract translation:一种用于基于硬件的变形视频缩放的方法和装置。 在一个实施例中,该方法包括根据对应于当前输出像素的输入控制存储器的条目获取零个或多个新的输入像素。 一旦获取,零个或多个新的输入像素代替N个输入像素的至少一个存储的输入像素。 使用根据与当前输出像素相对应的系数存储器的条目选择的更新的N个输入像素和N个系数集合,执行诸如变形缩放计算的像素计算。 在一个实施例中,通过将X×Y像素帧细分为X / M M×Y像素子帧来执行变形缩放。 描述和要求保护其他实施例。
Abstract:
A method, including: obtaining a velocity model generated by an acoustic full wavefield inversion process; generating, with a computer, a variable Q model by applying pseudo-Q migration on processed seismic data of a subsurface region, wherein the velocity model is used as a guided constraint in the pseudo-Q migration; and generating, with a computer, a final subsurface velocity model that recovers amplitude attenuation caused by gas anomalies in the subsurface region by performing a visco-acoustic full wavefield inversion process, wherein the variable Q model is fixed in the visco-acoustic full wavefield inversion process.
Abstract:
The present invention provides novel serum-free cell culture medium and methods for cultivating MDCK cells. In particular, non-tumorigenic MDCK cells. The present invention also provides methods for producing influenza viruses (e.g., particularly cold-adapted, and/or temperature sensitive, and/or attenuated influenza viruses) that eliminate the need for a cell culture medium exchange step. The novel medium and methods are useful to grow influenza viruses, in cell culture to high titer. The present invention further provides purification methods for purifying influenza viruses with high overall recovery of live virus and result in levels of host cell DNA (HCD), host cell protein (HCP) and non-specific endonuclease (e.g., Benzonase), which are below the specifications required by regulatory agencies. The immunogenic compositions can be used to actively immunize subjects or to generate antibodies for a variety of uses, including passive immunization and diagnostic immunoassays.
Abstract:
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to Raman imaging devices (e.g., Raman endoscope probes) or systems, methods of using Raman agents, Raman imaging devices, and/or systems to image or detect a signal, and the like.
Abstract:
The present invention relates to novel MDCK cells which can be to grow viruses, e.g., influenza viruses, in cell culture to higher titer than previously possible. The MDCK cells can be adapted to serum-free culture medium. The present invention further relates to cell culture compositions comprising the MDCK cells and cultivation methods for growing the MDCK cells. The present invention further relates to methods for producing influenza viruses in cell culture using the MDCK cells of the invention.
Abstract:
The present invention relates to novel MDCK cells which can be to grow viruses, e.g., influenza viruses, in cell culture to higher titer than previously possible. The MDCK cells can be adapted to serum-free culture medium. The present invention further relates to cell culture compositions comprising the MDCK cells and cultivation methods for growing the MDCK cells. The present invention further relates to methods for producing influenza viruses in cell culture using the MDCK cells of the invention.
Abstract:
The present invention relates to novel MDCK cells which can be to grow viruses, e.g., influenza viruses, in cell culture to higher titer than previously possible. The MDCK cells can be adapted to serum-free culture medium. The present invention further relates to cell culture compositions comprising the MDCK cells and cultivation methods for growing the MDCK cells. The present invention further relates to methods for producing influenza viruses in cell culture using the MDCK cells of the invention.