Abstract:
A method of forming a self-aligned contact in a semiconductor device comprising a semiconductor substrate and a gate line. The method comprises the steps of forming a conductive layer on an overall surface of the semiconductor substrate including the gate line, planarization-etching the conductive layer down to the gate line, and etching the conductive layer to form the contact, the etching performed at least until the contact is electrically separated from other portions of the conductive layer. The method may reduce or eliminate pad-to-gate electrode shorts by preventing exposure during etching of the gate electrode, reduce or eliminate pad-to-pad bridging by preventing generation of void regions, and reduce contact resistance by securing enough contact area between a pad and an active region in spite of misalignment of a photoresist pattern.
Abstract:
An integrated circuit device includes a substrate, an insulating layer on the substrate, and a plurality of parallel conductive lines on the insulating layer. An etch barrier is on each of the parallel conductive lines wherein each of the etch barriers comprises a layer of silicon nitride on a respective conductive line and wherein each of the etch barriers further comprises a layer of silicon on the silicon nitride layer. In addition, the device includes a plurality of conductive vias through the insulating layer providing electrical connection to respective surface portions of the substrate, wherein each of the conductive vias is provided in the insulating layer between the etch barriers.
Abstract:
A UI for presenting and reviewing a document is optimized based upon the type of computing device being utilized to present the document. One such UI includes a first pane showing a view of the document under review that is sized and formatted for display on a large-format display device. The first pane can also be utilized to emphasize a portion of the document. The UI also includes a second pane that includes indicators for each of the reviewers of the document. The selection of an indicator will cause a portion of the document being reviewed by the corresponding reviewer to be displayed in the first pane. The UI also includes a third pane that includes a scaled image of the document shown in the first pane. Selection of a portion of the scaled image causes the selected portion of the document to be displayed in the first pane.
Abstract:
A backlight unit having improved luminance and reduced profile, and a liquid crystal display including the same are disclosed. In one embodiment, the backlight unit includes: i) a light source, ii) a light guiding plate including an incoming surface on which light generated from the light source is incident, an upper surface substantially perpendicularly extended with respect to the incoming surface, and a bottom surface arranged facing the upper surface and iii) an optical sheet formed on the light guiding plate. The upper surface of the light guiding plate includes a guiding surface, an incoming surface, and an emission surface sequentially arranged close to the incoming surface of the light guiding plate, and the optical sheet may be formed to cover the inclined surface and the guiding surface.
Abstract:
A semiconductor device includes a substrate, a gate insulation layer, a gate structure, a gate spacer, and first and second impurity regions. The substrate has an active region defined by an isolation layer. The active region has a gate trench thereon. The gate insulation layer is formed on an inner wall of the gate trench. The gate structure is formed on the gate insulation layer to fill the gate trench. The gate structure has a width smaller than that of the gate trench, and has a recess at a first portion thereof. The gate spacer is formed on sidewalls of the gate structure. The first and second impurity regions are formed at upper portions of the active region adjacent to the gate structure. The first impurity region is closer to the recess than the second impurity region. Related methods are also provided.
Abstract:
A method for controlling a hard disk drive, includes a track seeking servo routine in which seek time is measured in a mode of the routine after the trajectory mode, the measured seek time is compared with a predetermined period of time, and an alarm mode is induced when the measured seek time exceeds the predetermined period of seek time.
Abstract:
A remote forensics system based on a network is provided to allow for accessing a forensics analysis center from a remote area to perform forensic analysis. The network-based remote forensic system includes: one or more remote terminals performing forensic analysis on an evidence device in a remote area, through a virtual forensic tool when the evidence device is connected thereto; and an investigation center system connected to the remote terminals via a wide area network to provide the virtual forensic tool, processing a requirement of the remote terminals, and providing requirement processing results to the remote terminals.
Abstract:
An apparatus for collecting evidence data includes: an online data collection unit for collecting online data from a location designated by a user; a screen capture unit for capturing shots viewed on a computer screen, as they are; a time stamping unit for calculating a message digest for the collected online data to generate a time stamp including date and time when the message digest has been generated and a signature of the time stamping unit itself; and an image generation unit for generating a forensic image for the collected online data and generating a message digest for the collected online data.
Abstract:
A liquid crystal display (LCD) apparatus time-divides a frame into a plurality of fields, in which lights having a color different from each other, are generated. The LCD apparatus includes a backlight unit. The backlight unit includes n of light-generating units sequentially generating the lights in the fields. An initial light-generating time of an nth light-generating unit being delayed by a predetermined time gap relative to the (n−1)th light-generating unit so that each of the fields includes a first period, in which one of the lights is generated, and a second period, in which at least two of the lights are generated. The light-generating units generate a peak light having a peak intensity in the first period. Thus, the intensity of light or the time period for which the light is generated, is controlled so that color mixing is minimized and color purity is improved.
Abstract:
A recessed channel transistor includes a single crystalline silicon substrate having a recessed portion, a bottom surface of the recessed portion including an elevated central portion, a channel doping region in the single crystalline silicon substrate, the channel doping region being under the bottom surface of the recessed portion, a gate structure in the recessed portion, and source/drain regions in the single crystalline silicon substrate at both sides of the recessed portion, the source/drain regions being spaced apart from the bottom surface of the recessed portion.