Abstract:
The present invention relates to a composition comprising microfibrillated cellulose, mono-, di- or oligo-saccharides and a pigment in order to achieve a composition with improved rheological properties such as a low viscosity even at high dry content. The present invention further relates to process for the production of said composition. The microfibrillated cellulose is produced by at least partly enzymatic treatment of cellulosic fibers such that even mono-, di- or oligo-saccharide is formed.
Abstract:
The invention relates to a method of providing board containers (V) with prints and a printing machine that applies the method. According to the invention, the printing machine comprises a turret head (2), with uniformly spaced radial arms (3) diverging from its rotational axis, each arm ending in a mandrel (4) that carries a container (1); and stationary stations (5, 6, 8) that are located on the path of the turret head for gripping a container, printing it by a printhead (7, 13), and removing the printed container (V). At the printing station (6), the container (1) is digital-printed by the printhead (7), past which the surface of the container is conveyed by means of a rotational motion. The container can be a conical drinking cup (1), which is ink-jet printed by the stationary printhead (7) by rotating the cup by 360° by means of the mandrel (4) that is pushed inside the cup. The cups (1) can be produced at a plant in mass-scale production runs and divided into smaller lots, which are delivered to customers and which the customers then print according to their own individual needs.
Abstract:
The present invention relates to a process for purifying a slurry comprising cellulose, such as microfibrillated cellulose, wherein the process comprises the following steps: —providing a slurry comprising cellulose and liquid, —subjecting the slurry to an electric field inducing the liquid of the slurry to flow, —separating the liquid from the cellulose thus obtaining a liquid depleted slurry, —adding a washing liquid, such as an organic solvent, to the liquid depleted slurry—subjecting the liquid depleted slurry to an electric field inducing the washing liquid of the slurry to flow and—separating the washing liquid from the cellulose, thus obtaining a purified cellulose. The invention also relates to cellulose such as microfibrillated cellulose obtainable from said process.
Abstract:
The invention refers to a method for forming particles or droplets of at least one substance comprising the steps of providing a foamed medium, which foamed medium comprises said substance, and forming particles or droplets of said substance at least partly by electrostatic processing. The use of foamed medium in electrostatic processing enables higher production speeds and increases the evenness of a coating layer formed by electrospinning or electrospraying the particles or droplets on a substrate.
Abstract:
The present invention relates to a process for the production of a composition wherein the process comprises pre-treating cellulosic fibers by mechanical, chemical and/or enzymatic treatment, mixing the pre-treated cellulosic fibers with pigments forming a dispersion and dispersing the dispersion of pre-treated cellulosic fibers and pigments whereby a composition comprising microfibrillated cellulose is formed. The invention further relates to a composition produced according to the process.
Abstract:
A process for treating cellulosic fibers comprising pre-treating the fibers with an enzyme in a first enzymatic treatment followed by mechanical pre-treating the fibers in a first mechanical treatment and a second enzymatic treatment followed by a second mechanical treatment of the fibers to form micofibrillated cellulose. In this way it is possible to produce mircofibrillated cellulose (MFC) in an improved and energy efficient way.
Abstract:
The present invention relates to a process for the production of a composition wherein the process comprises pre-treating cellulosic fibers by mechanical, chemical and/or enzymatic treatment, mixing the pre-treated cellulosic fibers with pigments forming a dispersion and dispersing the dispersion of pre-treated cellulosic fibers and pigments whereby a composition comprising microfibrillated cellulose is formed. The invention further relates to a composition produced according to the process.
Abstract:
A process for treating cellulosic fibres comprising pre-treating the fibres with an enzyme in a first enzymatic treatment followed by mechanical pre-treating the fibres in a first mechanical treatment and a second enzymatic treatment followed by a second mechanical treatment of the fibres to form micofibrillated cellulose. In this way it is possible to produce mircofibrillated cellulose (MFC) in an improved and energy efficient way.
Abstract:
The invention refers to a method for forming particles or droplets of at least one substance comprising the steps of providing a foamed medium, which foamed medium comprises said substance, and forming particles or droplets of said substance at least partly by electrostatic processing. The use of foamed medium in electrostatic processing enables higher production speeds and increases the evenness of a coating layer formed by electrospinning or electrospraying the particles or droplets on a substrate.
Abstract:
The invention relates to a method of providing board containers (V) with prints and a printing machine that applies the method. According to the invention, the printing machine comprises a turret head (2), with uniformly spaced radial arms (3) diverging from its rotational axis, each arm ending in a mandrel (4) that carries a container (1); and stationary stations (5, 6, 8) that are located on the path of the turret head for gripping a container, printing it by a printhead (7, 13), and removing the printed container (V). At the printing station (6), the container (1) is digital-printed by the printhead (7), past which the surface of the container is conveyed by means of a rotational motion. The container can be a conical drinking cup (1), which is ink-jet printed by the stationary printhead (7) by rotating the cup by 360° by means of the mandrel (4) that is pushed inside the cup. The cups (I) can be produced at a plant in mass-scale production runs and divided into smaller lots, which are delivered to customers and which the customers then print according to their own individual needs.