Abstract:
A device structure includes a substrate; a group-III nitride layer over the substrate; a metal nitride layer over the group-III nitride layer; and a light-emitting layer over the metal nitride layer. The metal nitride layer acts as a reflector reflecting the light emitted by the light-emitting layer.
Abstract:
A method and system for parallel computation of a linear sequential circuit (LSC) based on a state transition matrix is disclosed herein. A multistep state transition matrix and a multistep output generation matrix can be pre-computed and stored in association with the linear sequential circuit. The multiple state transitions and the multiple output bits can be computed by multiplying the current input-state vector with a multistep next state transition matrix and a multistep output generation matrix, respectively. Multiple state transitions and multiple output bits can be generated in parallel in a single clock cycle based on the pre-computed state transition matrix and the output generation matrix utilizing a dot product in order to improve computational speed. Such a simple augmentation provides a flexible and inexpensive solution for high speedup linear sequential circuit computation with respect to a processor.
Abstract:
A linear motion guide device includes a movable member attached onto an elongated member for forming an endless multiple-turn, helical raceway between the elongated member and the movable member and for receiving ball bearing members, and a detecting device includes a magnetic member and an integrated circuit disposed in the movable member and arranged close to the endless multiple-turn, helical raceway for detecting a moving frequency or a movement of the ball bearing members through the endless multiple-turn, helical raceway of the linear motion guide device and for detecting a wear or failure of the ball bearing members and for generating a warning signal.
Abstract:
A semiconductor structure includes a substrate and a conductive carrier-tunneling layer over and contacting the substrate. The conductive carrier-tunneling layer includes first group-III nitride (III-nitride) layers having a first bandgap, wherein the first III-nitride layers have a thickness less than about 5 nm; and second III-nitride layers having a second bandgap lower than the first bandgap, wherein the first III-nitride layers and the second III-nitride layers are stacked in an alternating pattern. The semiconductor structure is free from a III-nitride layer between the substrate and the conductive carrier-tunneling layer. The semiconductor structure further includes an active layer over the conductive carrier-tunneling layer.
Abstract:
A method and system for canonical channel estimation in the Long Term Evolution uplink where a multi-frequency signal is generated and then converted to frequency spectrum which is then convolved in the frequency domain with a truncated window function to obtain a time domain channel impulse response. The time domain channel impulse response can be then transformed to a frequency domain to produce a down sampled user channel response, which can be then linearly interpolated to provide a channel estimate for a plurality of subcarriers. Such an approach achieves channel estimation within Long Term Evolution at only canonical locations to reduce complexity without loss in channel entropy.
Abstract:
A method of driving pixels of a liquid crystal display, a pixel driving device, and a liquid crystal display having the same are provided. The liquid crystal display includes a liquid crystal panel and a pixel driving device, wherein the pixel driving device selectively outputs driving signals having different polarity permutations based on the structure of the display units in the liquid crystal panel.
Abstract:
An intelligent transmission element includes a first element formed in a strip shape and disposed with a slot therein; a second element disposed with a containing space for placing the first element, wherein the inner side of the containing space is disposed with a tank corresponding to the plurality of slots, the tank and the plurality of slots forms a loading path for disposing a plurality of rolling elements and a silencing element. The silencing element is placed between the plurality of rolling elements and contains a dye container for a dye. When the silencing element is damaged due to an external force, the dye inside the dye container of the silencing element would color the transmission element to let the user notice that the silencing element is damaged.
Abstract:
The invention discloses an over current protecting device and the method thereof. The over current protecting device is adapted to a DC-DC converter. A voltage output end of the DC-DC converter may generate an output current and transmit the output current to a load on a motherboard via a power copper layer on the motherboard. The over current protecting method includes the following steps: detecting a voltage drop on the power copper layer; controlling the DC-DC converter to operate normally when the voltage drop is smaller than a threshold value; and controlling the DC-DC converter to stop operating when the voltage drop is larger than the threshold value.
Abstract:
A motion guide device includes an elongated shaft having a groove formed on an outer peripheral surface, a movable member attached onto the shaft and having a bore for receiving the shaft, a housing attached to the movable member and having a space for receiving a lubricating oil, the housing includes a passage communicative with the bore and the space of the housing for allowing the lubricating oil to flow from the space into the groove of the shaft, and an oil applying member is rotatably engaged in the passage of the housing to carry and to apply or distribute the lubricating oil through the passage of the housing and then into the groove of the elongated shaft.
Abstract:
A light emitting diode (LED) device is presented. The LED device includes a substrate, a layered LED structure, and an embedded bottom electrode. The layered LED structure includes a buffer/nucleation layer disposed on the substrate, an active layer, and a top-side contact. A first-contact III-nitride layer is interposed between the buffer/nucleation layer and the active layer. A second-contact III-nitride layer is interposed between the active well layer and the top-side contact. A bottom electrode extends through the substrate, through the buffer/nucleation layer and terminates within the first-contact III-nitride layer.