Abstract:
Catalyst components for the polymerization of olefins comprising Mg, Ti, halogen and 1,3-diethers as internal donors having an improved balance of properties in terms of activity and morphological stability are obtained by a process comprising: (A) A first step comprising reacting an adduct of formula MgCl2(ROH)n, where R is a C1-C10 alkyl group, and n is from 0.5 to 6, with a titanium compound having at least a Ti—Cl bond at a reaction temperature ranging from 0° C. to 80° C.; (B) A subsequent step comprising contacting the solid product obtained in (A) with an electron donor ED selected from 1,3 diethers with a titanium compound having at least a Ti—Cl bond at a temperature higher than 80° C.; and (C) A subsequent step comprising reacting the solid product coming from (B) with a titanium compound having at least a Ti—Cl bond at a temperature higher than 80° C.
Abstract:
The present invention relates to an adduct comprising MgCl2, an alcohol (ROH) in which R is a C1-C10 hydrocarbon group, and a compound containing a transition metal M selected from the Groups 3 to 11 or the lanthanide or actinide groups of the Periodic Table of the Elements (new IUPAC version) in an amount such as to give a weight of M atoms lower than 10% based on the total weight of the adduct. The catalyst components that are obtained by reacting the adducts with halogenating agents show very high specific activity.
Abstract:
The invention provides new prepolymerized catalyst components for the (co)polymerization of olefins CH2═CHR, wherein R is hydrogen or a C1-C12 alkyl group, characterized by comprising a solid catalyst component, comprising Ti, Mg, halogen and an electron donor compound, being capable of yielding, under standard polymerization conditions, a propylene homopolymer having an insolubility in xylene at 25° C. higher than 90%, which is prepolymerized with ethylene to such an extent that the amount of the ethylene prepolymer is up to 100 g per g of said solid catalyst component. These solid catalyst components display to obtain a high catalyst activity, a high isotactic index, and are not affected by aging.
Abstract:
The present invention relates to MgCl2.mROH.nH2O adducts, where R is a C1-C10 alkyl, 2≦m≦4.2, and 0≦n≦0.7, characterized by a differential scanning calorimetry (DSC) profile in which no peaks are present at temperatures below 90° C. or, if peaks are present below said temperature, the fusion enthalpy associated with said peaks is less than 30% of the total fusion enthalpy. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and stereospecificity with respect to the catalysts prepared from the adducts of the prior art.
Abstract translation:本发明涉及MgCl 2·mROH·nH 2 O加合物,其中R是C 1 -C 10烷基,2 <= m <= 4.2,0 <= n <0.7,其特征在于差示扫描量热法(DSC) 在低于90℃的温度下不存在峰,或者如果在所述温度以下存在峰,则与所述峰相关联的熔融焓小于总熔融焓的30%。 从本发明的加合物获得的催化剂组分能够产生用于烯烃聚合的催化剂,其特征在于相对于由现有技术的加合物制备的催化剂具有增强的活性和立体定向性。
Abstract:
The present invention relates to a process for the preparation of MgCl2.pROH.qH2O adducts, where R is a C1-C10 alkyl, 1≦p≦6, and 0≦q≦1, comprising the steps of (a) dispersing magnesium dichloride in an inert liquid, (b)adding the alcohol in vapour phase and maintaining the temperature at values allowing the adduct to be melted, (c)emulsifying the molten adduct in a liquid medium immiscible with and chemically inert to said adduct and, (d) contacting the adduct with an inert cooling liquid.
Abstract:
The present invention relates to components of catalysts for the polymerization of olefins comprising the product that can be obtained by bringing a compound of a transition metal M, containing at least one M--.pi. bond, into contact with an olefinic prepolymer obtained by polymerization of one or more olefins with a coordination catalyst comprising a compound of Ti or V supported on a magnesium halide.
Abstract:
Multistage process for the polymerization of olefins CH.sub.2 .dbd.CHR, where R is hydrogen or an alkyl, cycloalkyl or aryl radical with 1-10 carbon atoms, comprising two stages of polymerization. In a first stage, in the presence of a titanium or a vanadium catalyst and working in one or more reactors, an olefinic polymer with particular values of porosity is prepared; in a second stage, in the presence of the said porous polymer and a metallocene compound and/or their reaction products, one or more olefins, that are equal to or different from those polymerized in the first stage, are polymerized in one or more reactors.
Abstract:
A process for the (co)polymerization ethylene, optionally in mixtures with olefins CH═CHR in which R is hydrogen or a hydrocarbyl radical with 1–12 carbon atoms, carried out in the presence of a catalyst system comprising (A) a solid catalyst component which comprises Mg, halogen an electron donor selected form ethers, esters, or amines, and Ti atoms in an oxidation state such that the weight percentage ratio between Ti(red)/Ti(tot) ranges from about 0.05 to about 1; wherein Ti(red) is the weight percentage on the solid catalyst component of the Ti atoms having a valence less than 4 and Ti(tot) is the weight percentage on the solid catalyst component of all the Ti atoms and (B) an Al-alkyl compound. The said process is capable to produce ethylene polymers with a reduced oligomers content and/or improved mechanical characteristics.