Abstract:
Quantum-well-based semiconductor devices and methods of forming quantum-well-based semiconductor devices are described. A method includes providing a hetero-structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
Modulation-doped multi-gate devices are generally described. In one example, an apparatus includes a semiconductor substrate having a surface, one or more buffer films coupled to the surface of the semiconductor substrate, a first barrier film coupled to the one or more buffer films, a multi-gate fin coupled to the first barrier film, the multi-gate fin comprising a source region, a drain region, and a channel region of a multi-gate device wherein the channel region is disposed between the source region and the drain region, a spacer film coupled to the multi-gate fin, and a doped film coupled to the spacer film.
Abstract:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
Abstract:
Semiconductor heterostructures to reduce short channel effects are generally described. In one example, an apparatus includes a semiconductor substrate, one or more buffer layers coupled to the semiconductor substrate, a first barrier layer coupled to the one or more buffer layers, a back gate layer coupled to the first barrier layer wherein the back gate layer includes a group III-V semiconductor material, a group II-VI semiconductor material, or combinations thereof, the back gate layer having a first bandgap, a second barrier layer coupled to the back gate layer wherein the second barrier layer includes a group III-V semiconductor material, a group II-VI semiconductor material, or combinations thereof, the second barrier layer having a second bandgap that is relatively larger than the first bandgap, and a quantum well channel coupled to the second barrier layer, the quantum well channel having a third bandgap that is relatively smaller than the second bandgap.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
Quantum-well-based semiconductor devices and methods of forming quantum-well-based semiconductor devices are described. A method includes providing a hetero-structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.
Abstract:
A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
Abstract:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
Abstract:
Quantum-well-based semiconductor devices and methods of forming quantum-well-based semiconductor devices are described. A method includes providing a hetero-structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.