Abstract:
A method of implementing an electrolytic polishing process against a wiring-material film by way of preventing excessive polishing or incomplete polishing caused by presence of differential steps locally generated in the objective wiring-material film. The inventive method comprises a step of forming a wiring-material film for burying recessed portions formed on an insulating film formed on a substrate via a plating process; a step of reducing a local differential step generated on the surface of the wiring-material film by way of preserving the wiring material film on the insulating film; and a final step of removing the wiring-material film deposited on the insulating film by way of preserving such wiring-material film deposited, solely inside of the recessed portions.
Abstract:
A process for fabricating a semiconductor device, which comprises forming a recess portion in an insulating film covering a wiring made of copper or a copper alloy so that the recess portion reaches the wiring, wherein, after forming the recess portion, a plasma treatment using a gas containing hydrogen gas and nitrogen gas is conducted in a state such that the wiring is exposed through the bottom portion of the recess portion, or a plasma treatment using a gas containing hydrogen gas is conducted in a state such that the wiring is exposed through the bottom portion of the recess portion while cooling a substrate on which the wiring is formed. By the process of the present invention, a problem of redeposition of copper on the sidewall of a via hole in the argon sputtering and a problem of an etching process of the organic insulating film in the hydrogen plasma treatment can be solved, thus realizing excellent cleaning of the bottom portion of the via hole.
Abstract:
In a related interconnection structure that is formed by filling a metal, there have been problems, since defective connection occurs due to generation of voids and other features caused by poor filling of the metal, which entails reduction in reliability, and contact resistance is large due to a barrier metal layer at a contact portion. A novel interconnection structure is provided which comprises: a recess (for example, a contact hole, a trench, or a trench and a contact hole formed at a bottom of the trench), which is connected onto a conductive material mass formed in an insulating film, and which is formed in the insulating film; a barrier metal layer formed on side walls of the recess; and metal material masses filled in the interior of the recess, wherein the metal material masses are formed with a metal repeatedly filled into the recess over a plurality of times, and a metal material mass and a conductive material mass are directly connected to each other.
Abstract:
A hard Al oxide film having a high melting point, which grows on the surface of an Al—Cu film during a wafer is carried in atmospheric air, obstructs the burying of a viahole with the Al—Cu film by high pressure reflow, with a result that a void remains in the hole. The present invention is intended to remove such an Al oxide film grown on the Al—Cu film formed by sputtering, by Ar+ sputtering/etching directly before high pressure reflow. Moreover, when a Ti oxide film is present on the surface of a Ti based underlying film formed by CVD, an Al oxide film is possibly grown at the boundary between the Ti based underlying film and an Al—Cu film laminated thereon. In this case, the Ti oxide film is similarly removed directly before formation of the Al—Cu film, thereby preventing the growth of the Al oxide film. With this method, it is possible to highly keep thermal flow of a conductive film in a high pressure reflow process, and hence to desirably bury a connection hole with the conductive film.
Abstract:
Upon forming a groove and a connection hole by a dual damascene process, there is a problem in that the connection hole has a bowing shape, and it is difficult to form a shape of the connection hole in a good and stable manner. A process for producing a multi-layer wiring structure is provided, which comprises a step of forming an inter level dielectric film 15 covering a lower layer wiring 14; a step of forming a connection hole 16 in the inter level dielectric film 15 to reach the lower layer wiring 14; a step of forming an inter metal dielectric film 17 filling the connection hole 16 on the inter level dielectric film 15, with an insulating material having an etching rate larger than an etching rate of the inter level dielectric film 15; and a step of forming a concave part 18 in the inter metal dielectric film 17, and selectively re-opening the connection hole 16 with respect to the inter level dielectric film in such a manner that the connection hole is continuous to the concave part 18.
Abstract:
The present invention provides a process for fabricating a connection structure comprising a anti-reaction layer having excellent barrier properties and having improved ohmic characteristics with respect to the semiconductor substrate. Accordingly, the present invention comprises forming a first anti-reaction layer by temporarily ceasing the film deposition, and then initiating the film deposition again to form a second anti-reaction layer on the surface of the previously deposited first anti-reaction layer. A heat treatment can be applied to the structure after depositing a anti-reaction layer.