Abstract:
Embodiments of process kits for substrate supports of semiconductor substrate process chambers are provided herein. In some embodiments, a process kit for a semiconductor process chamber may include an annular body being substantially horizontal and having an inner and an outer edge, and an upper and a lower surface; an inner lip disposed proximate the inner edge and extending vertically from the upper surface; and an outer lip disposed proximate the outer edge and on the lower surface, and having a shape conforming to a surface of the substrate support pedestal. In some embodiments, a process kit for a semiconductor process chamber my include an annular body having an inner and an outer edge, and having an upper and lower surface, the upper surface disposed at a downward angle of between about 5-65 degrees in an radially outward direction from the inner edge toward the outer edge.
Abstract:
Embodiments of the invention provide a method and apparatus for protecting a susceptor during a cleaning operation by loading a ceramic cover substrate containing either aluminum nitride or beryllium oxide onto the susceptor before introducing the cleaning agent into the chamber. In one embodiment, an aluminum nitride ceramic cover substrate is provided which includes an aluminum nitride ceramic wafer having a thermal conductivity of greater than 160 W/m-K, a circular-shaped geometry having a diameter within a range from about 11 inches to about 13 inches, a thickness within a range from about 0.030 inches to about 0.060 inches, and a flatness of about 0.010 inches or less. The thermal conductivity may be about 180 W/m-K, about 190 W/m-K, or greater. The thickness may be within a range from about 0.035 inches to about 0.050 inches, and the flatness may be about 0.008 inches, about 0.006 inches, or less.
Abstract:
Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal nitride film layer on the conductive film layer, a silicon-containing film layer on the refractory metal nitride film layer, and a tungsten film layer on the silicon-containing film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
Abstract:
An exhaust foreline for purging fluids from a semiconductor fabrication chamber is described. The foreline may include a first, second and third ports independently coupled to the chamber. A semiconductor fabrication system is also described that includes a substrate chamber that has a first, second and third interface port. The system may also include a multi-port foreline that has a first, second and third port, where the first foreline port is coupled to the first interface port, the second foreline port is coupled to the second interface port, and the third foreline port is coupled to the third interface port. The system may further include an exhaust vacuum coupled to the multi-port foreline.
Abstract:
Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate in the chamber.