摘要:
The present invention provides modified molecular sieve membranes with improved CO2/CH4 separation selectivity and methods for making such membranes. The molecular sieve membranes are modified by adsorption of a modifying agent, such as ammonia, within and/or on the membrane.
摘要:
The present invention provides modified molecular sieve membranes with improved CO2/CH4 separation selectivity and methods for making such membranes. The molecular sieve membranes are modified by adsorption of a modifying agent, such as ammonia, within and/or on the membrane.
摘要:
The invention provides composite nanofiltration membranes (FIG. 5) with lyotropic liquid crystal (LLC) polymer porous membranes (30) attached to a porous support (20). The LLC membranes are prepared from LLC monomers which form the inverted hexagonal or bicontinuous cubic phase. The arrangement, size, and chemical properties of the pores can be tailored on the molecular level. The composite membrane of the invention is useful for separation processes involving aqueous and nonaqueous solutions as well as gases. Methods for making and using the composite nanofiltration membranes of the inventions are also provided.
摘要:
The invention provides composite nanofiltration membranes with a lyotropic liquid crystal (LLC) polymer composition embedded in or forming a layer on a porous support. The LLC membranes are prepared from LLC monomers which form a bicontinuous cubic (QI) phase. The arrangement, size, and chemical properties of the pores can be tailored on the molecular level. The composite membranes of the invention are useful for separation processes involving aqueous and nonaqueous solutions as well as gases. Methods for making and using the composite nanofiltration membranes of the invention are also provided.
摘要:
The invention provides heteroaryl salts and methods for producing the same. In particular, the invention provides heteroaryl salts of the formula: and methods for producing the same, where M, a, X1, X2, X3, and X4 are those defined herein.
摘要:
SAPO-34 membranes and methods for their preparation and use are described. The SAPO-34 membranes are prepared by contacting at least one surface of a porous membrane support with a synthesis gel comprising a first and a second templating agent. SAPO-34 crystals having a narrow size distribution were applied to the surface of the support prior to synthesis. A layer of SAPO-34 crystals is formed on at least one surface of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
摘要:
Zeolite membranes that can be used to continuously separate components of mixtures are disclosed. The zeolite membranes are prepared by isomorphous substitution, which allows systematic modification of the zeolite surface and pore structure. Through proper selection of the basic zeolite framework structure and compensating cations, isomorphous substitution permits high separation selectivity without many of the problems associated with zeolite post-synthesis treatments. The inventive method for preparing zeolite membranes is alkali-free and is much simpler than prior methods for making acid hydrogen zeolite membranes, which can be used as catalysts in membrane reactors.
摘要:
Derivatized molybdenum-sulfide dimers of the general formula [(C.sub.5 R.sub.5 Mo).sub.2 (.mu.-S).sub.4-x (.mu.-SR).sub.x ].sup.n are utilized in the solid state, incorporated in permselective membranes and in aqueous solution as chemical specific complexing agents in various separation processes.
摘要:
Magnetically stabilized fluidized bed technology is utilized in conjunction with ion-exchange adsorption/desorption processes in a method and system for isolating proteins from cell lysate. The invention also includes a magnetizable, porous, ion-exchange particle, and a method for producing the same, for use with the stationary magnetically stabilized fluidized bed protein isolation process.
摘要:
Porous bulk materials formed of shape-persistent, non-collapsible, three-dimensional molecular cage building blocks are presented that are useful for a variety of applications including gas separation/storage, sensing, and catalysis.