Abstract:
A sensor includes a first reception unit configured for sensing a first signal of a first frequency band and a second reception unit configured for sensing a second signal of a second frequency band. There is a height difference between the first reception unit and the second reception unit.
Abstract:
A package structure with an optical barrier is provided. An emitter for emitting an optical signal and a detector for receiving the optical signal are disposed on a substrate. The optical barrier is disposed between the emitter and the detector for shielding the excess optical signal. A package material is used to completely cover the optical barrier, the emitter and the detector so that the optical barrier is completely disposed within the package material.
Abstract:
The present application relates to a display system with a light sensor and a control method thereof. The display system comprises a display module and a light sensor. The display module comprises a driving circuit for generating a driving signal. Said driving signal comprises a plurality of periodic pulse waves. The OFF time of one of the periodic pulse waves is extended to an extended time which is greater than the OFF time of the remaining periodic pulse waves. This ensures that the sensing result of the light sensor may not include the contribution of display light.
Abstract:
A light sensor and a control method thereof are disclosed. The light sensor comprises a light-emitting element, a first light-sensing unit and a second light-sensing unit. The light-emitting element generates an emission signal. The light-sensitive characteristic of the first light-sensing unit corresponds to a first wavelength range. The light-sensitive characteristic of the second light-sensing unit corresponds to a second wavelength range, which is different from the first wavelength range. In this way, when the emission signal is reflected by an object and received by the first light-sensing unit and the second light-sensing unit, the type of the object may be determined based on the difference between the signal sensed by the first light-sensing unit and the signal sensed by the second light-sensing unit.
Abstract:
The present application relates to a method of operating a capacitance sensing device comprises: calculating a difference of a raw data compared to one of the raw data received in a previous data frame; and performing a comparison calculation based on the raw data and a stored baseline value to determine whether a proximity event has occurred. Under the proximity event, selects one of several baseline value update procedures based on the magnitude of the difference. Thus, the present application effectively avoids the problem of failure to update the baseline value when the object is close to the capacitance sensing device for a long period of time, which may lead to misjudgment of the capacitance sensing device.
Abstract:
A complex sensing device packaging structure and packaging method are disclosed. The packaging structure includes a substrate disposed with a light emitting element and a light sensing chip. A first non-transparent material is disposed on the light sensing chip. A transparent molding material surrounds the light emitting element, the light sensing chip and the first non-transparent material. A second non-transparent material is disposed inside the transparent molding material, and the second non-transparent material is connected with the first non-transparent material
Abstract:
The present application discloses an inertial sensor comprising a proof mass, an anchor, a flexible member and several sensing electrodes. The anchor is positioned on one side of the sensing, mass block in a first axis. The flexible member is connected to the anchor point and extends along the first axis towards the proof mass to connect the proof mass, in which the several sensing electrodes are provided. In this way, the present application can effectively solve the problems of high difficulty in the production and assembly of inertial sensors and poor product reliability thereof.
Abstract:
A light sensor circuit, which comprising a photodiode and a voltage follower. By setting the voltage follower to reduce the influence from the junction capacitance of the photodiode, a required time of a repeat integration module will not be influenced by the photodiode to efficiently keep the performance and the accuracy of the analog to digital converting device when the light sensor circuit is used to the analog to digital converting device in repeat operation.
Abstract:
An optical sensing module for an electronic device is provided. The electronic device includes an opaque layer and an aperture formed on the opaque layer, wherein the optical sensing module includes an optical sensor; a light guide element, disposed between the opaque layer and the optical sensor and configured to guide light to the optical sensor through the aperture; and a diffusing layer, disposed between the opaque layer and the light guide element, configured to diffuse the light to the light guide element.
Abstract:
A light sensor structure and the manufacturing method thereof are disclosed. The light sensor structure includes a substrate with a first surface and a second surface opposite to each other. A light sensing element including a light sensing area is disposed on the first surface. A reflection layer is disposed on the second surface. The reflection layer covers a portion of the second surface aligning with the light sensing area.