Abstract:
A method of characterizing a monolithic tunable mid-infrared laser including a heterogeneous quantum cascade active region together with a least first and a second tunable integrated distributed feedback gratings, the method including operating the laser while tuning the first grating through its full tuning range, while holding the reflectivity function of the second grating constant, then operating the laser while tuning the second grating through its full tuning range, while holding the reflectivity function of the first grating constant.
Abstract:
Disclosed is a semiconductor optical emitter having an optical mode and a gain section, the emitter comprising a low loss waveguide structure made of two alternating layers of semiconductor materials A and B, having refractive indexes of Na and Nb, respectively, with an effective index No of the optical mode in the low loss waveguide between Na and Nb, wherein No is within a 5% error margin of identical to a refractive index of the gain section and wherein the gain section is butt-jointed with the low loss waveguide, and wherein the size and shape of the optical mode(s) in the low loss waveguide and gain section are within a 10% error margin of equal. Desirably, at least one of the semiconductor materials A and B has a sufficiently large band gap that the passive waveguide structure blocks current under a voltage bias of 15 V.
Abstract:
Disclosed is a semiconductor optical emitter having an optical mode and a gain section, the emitter comprising a low loss waveguide structure made of two alternating layers of semiconductor materials A and B, having refractive indexes of Na and Nb, respectively, with an effective index No of the optical mode in the low loss waveguide between Na and Nb, wherein No is within a 5% error margin of identical to a refractive index of the gain section and wherein the gain section is butt-jointed with the low loss waveguide, and wherein the size and shape of the optical mode(s) in the low loss waveguide and gain section are within a 10% error margin of equal. Desirably, at least one of the semiconductor materials A and B has a sufficiently large band gap that the passive waveguide structure blocks current under a voltage bias of 15 V.
Abstract:
A monolithic tunable mid-infrared laser has a wavelength range within the range of 3-14 μm and comprises a heterogeneous quantum cascade active region together with at least a first integrated grating. The heterogeneous quantum cascade active region comprises at least one stack, the stack comprising two, desirably at least three differing stages. Methods of operating and calibrating the laser are also disclosed.