Abstract:
Disclosed is a method of forming a laser source capable of producing mid-IR laser radiation comprises growing a first core structure on a substrate, etching away the first core structure in one or more locations, and growing a second core structure on the substrate. At least one of the core structures comprises a quantum cascade gain medium emitting at a frequency within the range from 3-14 μm. Also disclosed is a laser source capable of producing mid-IR laser radiation comprising a quantum-cascade core positioned on a substrate for emitting within the range from 3-14 μm and a second core on the substrate positioned in-plane relative to the first core. The second core is one of a) a passive waveguide core b) a second quantum-cascade core and c) a semiconductor active core region.
Abstract:
Disclosed is a semiconductor optical emitter having an optical mode and a gain section, the emitter comprising a low loss waveguide structure made of two alternating layers of semiconductor materials A and B, having refractive indexes of Na and Nb, respectively, with an effective index No of the optical mode in the low loss waveguide between Na and Nb, wherein No is within a 5% error margin of identical to a refractive index of the gain section and wherein the gain section is butt-jointed with the low loss waveguide, and wherein the size and shape of the optical mode(s) in the low loss waveguide and gain section are within a 10% error margin of equal. Desirably, at least one of the semiconductor materials A and B has a sufficiently large band gap that the passive waveguide structure blocks current under a voltage bias of 15 V.
Abstract:
Concatenated distributed feedback lasers having novel waveguides are disclosed. The waveguides allow for coupling of the laser beam between active and passive waveguide structures and improved device design and output efficiency. Methods of making along with methods of using such devices are also disclosed.
Abstract:
Concatenated distributed feedback lasers having multiple laser sections laid out in series are disclosed. The concatenated distributed feedback lasers utilize quantum cascade core designs to produce optical gain in the mid-infrared region and may generate several wavelengths simultaneously or sequentially. Methods of making along with methods of using such devices are also disclosed.
Abstract:
A monolithic tunable mid-infrared laser has a wavelength range within the range of 3-14 μm and comprises a heterogeneous quantum cascade active region together with at least a first integrated grating. The heterogeneous quantum cascade active region comprises at least one stack, the stack comprising two, desirably at least three differing stages. Methods of operating and calibrating the laser are also disclosed.
Abstract:
Disclosed is a method of forming a laser source capable of producing mid-IR laser radiation comprises growing a first core structure on a substrate, etching away the first core structure in one or more locations, and growing a second core structure on the substrate. At least one of the core structures comprises a quantum cascade gain medium emitting at a frequency within the range from 3-14 μm. Also disclosed is a laser source capable of producing mid-IR laser radiation comprising a quantum-cascade core positioned on a substrate for emitting within the range from 3-14 μm and a second core on the substrate positioned in-plane relative to the first core. The second core is one of a) a passive waveguide core b) a second quantum-cascade core and c) a semiconductor active core region.
Abstract:
A method of characterizing a monolithic tunable mid-infrared laser including a heterogeneous quantum cascade active region together with a least first and a second tunable integrated distributed feedback gratings, the method including operating the laser while tuning the first grating through its full tuning range, while holding the reflectivity function of the second grating constant, then operating the laser while tuning the second grating through its full tuning range, while holding the reflectivity function of the first grating constant.
Abstract:
Disclosed is a laser source capable of producing mid-IR laser radiation comprises growing a first core structure on a substrate, etching away the first core structure in one or more locations, and growing a second core structure on the substrate. At least one of the core structures comprises a quantum cascade gain medium emitting at a frequency within the range from 3-14 μm. Also disclosed is a laser source capable of producing mid-IR laser radiation comprising a quantum-cascade core positioned on a substrate for emitting within the range from 3-14 μm and a second core on the substrate positioned in-plane relative to the first core. The second core is one of a) a passive waveguide core b) a second quantum-cascade core and c) a semiconductor active core region.
Abstract:
Concatenated distributed feedback lasers having novel waveguides are disclosed. The waveguides allow for coupling of the laser beam between active and passive waveguide structures and improved device design and output efficiency. Methods of making along with methods of using such devices are also disclosed.
Abstract:
Disclosed is a semiconductor optical emitter having an optical mode and a gain section, the emitter comprising a low loss waveguide structure made of two alternating layers of semiconductor materials A and B, having refractive indexes of Na and Nb, respectively, with an effective index No of the optical mode in the low loss waveguide between Na and Nb, wherein No is within a 5% error margin of identical to a refractive index of the gain section and wherein the gain section is butt-jointed with the low loss waveguide, and wherein the size and shape of the optical mode(s) in the low loss waveguide and gain section are within a 10% error margin of equal. Desirably, at least one of the semiconductor materials A and B has a sufficiently large band gap that the passive waveguide structure blocks current under a voltage bias of 15 V.