Abstract:
A system and method are disclosed for adaptively accommodating a high amplitude downstream signal in a DSL modem. High amplitude downstream signals are common with local loop lengths of less than about 6,000 feet and can saturate DSL modem components and impair DSL service if not effectively accommodated.In general, a DSL system detects a high amplitude downstream DSL signal and adjusts a DSL modem analog front end in response to the detected high amplitude downstream DSL signal so that analog front end components of a DSL modem are not saturated by the high amplitude downstream DSL signal. Pursuant to one embodiment, a digital signal processor detects the high amplitude DSL signal and, in response, decreases a gain of a first stage receiver to accommodate the high amplitude downstream DSL signal. Another embodiment introduces additional attenuation of the downstream DSL signal to attenuate high amplitude downstream DSL signals before they enter first stage receiver amplifier circuits.
Abstract:
A transcoder for transcoding digital video signals includes a decoder and an encoder. In the decoder, an end-of-block (EOB) position of an incoming block received by the decoder is determined and a discrete cosine transform (DCT) block type is determined based on the determined EOB position. A reduced number of DCT coefficients is computed in a subsequent inverse DCT computation based on the DCT block type. In the encoder, if the incoming block is intercoded, no DCT coefficients are computed after the EOB of the incoming blocks is performing a DCT. Further, in the encoder when the incoming block is intercoded, an algorithm is applied to predict which DCT coefficients may become zero after a subsequent quantization operation, and only DCT coefficients that may not become zero are computed in performing the DCT.
Abstract:
Methods and systems for generating motion vectors for re-encoding video signals are disclosed. The motion vector is determined by the sum of a base motion vector and a delta motion vector. In the case of no frame-skipping, the base motion vector is the incoming motion vector. In the case of frame skipping, the base motion vector is the sum of the motion vectors of the incoming signal since the last re-encoded frame and the current frame. The delta motion vector is optimized by a minimum Sum of the Absolute Difference by searching over a smaller area than if searching for a new motion vector without a delta motion vector. These methods and systems may be used to improve re-encoding digital video signals.
Abstract:
An odd-order low-pass microfilter is disclosed for being interposed between a home telephone wiring network and a POTS, or voice-band, device to separate voice-band signals from higher frequency signals, such as ADSL signals and home networking signals. The filter topology is substantially symmetric so that the filter is reversible in that either end of the filter may be directly coupled to the home telephone wiring network without impairing high frequency signal performance or the filter characteristic of the filter. In one embodiment, the filter is a three-pole filter with a single capacitor disposed between a pair of coupled inductors. Each of the coupled inductors advantageously has an interwinding capacitance over about 100 pF to improve the filter frequency response without increasing the cost of the filter. In another embodiment, the filter is a reversible three-pole filter with a single capacitor disposed between first and second pairs of uncoupled, or discrete, inductors.
Abstract:
This processor is capable of real time processing of blocks of video pixel or other two-dimensional data to yield the two-dimensional Discrete Cosine Transform (DCT) thereof. The processor can be used as part of a video bandwidth or image compression system. The circuitry comprises a first one-dimensional DCT processor which simultaneously computes an entire row or column of vector inner products by using distributed arthmetic and using decimation-in-frequency to reduce the amount of memory capacity (ROM) required. Partial sums may also be used to further reduce ROM size. The one-dimensional transformed matrix from the first processor is stored in a transposition memory and the transpose of the stored matrix is applied to a second one-dimensional DCT processor of similar circuitry which computes the desired two-dimensional DCT of the input data matrix.
Abstract:
Compressive imaging apparatus employing multiple modulators in various optical schemes to generate the modulation patterns before the signal is recorded at a detector. The compressive imaging apparatus is equally valid when applying compressive imaging to structured light embodiments where the placement is shifted from the acquisition path between the subject and the detector into the illumination path between the source and the subject to be imaged.
Abstract:
Compressive imaging apparatus employing multiple modulators in various optical schemes to generate the modulation patterns before the signal is recorded at a detector. The compressive imaging apparatus is equally valid when applying compressive imaging to structured light embodiments where the placement is shifted from the acquisition path between the subject and the detector into the illumination path between the source and the subject to be imaged.
Abstract:
A lithium iron phosphate hierarchical structure includes a plurality of lithium iron phosphate nano sheets and has an overall spherical-shaped structure. The overall spherical-shaped structure is constructed by a plurality of lithium iron phosphate nano sheets layered together. A method for making a lithium iron phosphate hierarchical structure includes several steps. In the method, a lithium ion contained liquid solution, a ferrous ion contained liquid solution, and a phosphate ion contained liquid solution are respectively provided. A concentration of lithium ions in the lithium ion contained liquid solution is equal to or larger than 1.8 mol/L. The lithium ion contained liquid solution, the ferrous ion contained liquid solution, and the phosphate ion contained liquid solution are mixed to form a liquid mixture. The liquid mixture is heated in a sealed reactor to form the lithium iron phosphate hierarchical structure.
Abstract:
A method for cycling a sulfur composite lithium ion battery includes a step of charging and discharging the sulfur composite lithium ion battery at a first voltage range between a predetermined highest voltage and a predetermined lowest voltage. The lithium ion battery includes an electrode active material. The electrode active material includes a sulfur composite. The step of charging and discharging satisfies at least one conditions of (1) and (2): (1) the predetermined lowest voltage of the first voltage range is larger than a discharge cutoff voltage of the sulfur composite; and (2) the predetermined highest voltage of the first voltage range is smaller than a charge cutoff voltage of the sulfur composite. A method for using a sulfur composite as an electrode active material of a lithium ion battery is also disclosed.
Abstract:
A lithium iron phosphate hierarchical structure includes a plurality of lithium iron phosphate nano sheets and has an overall spherical-shaped structure. The overall spherical-shaped structure is constructed by a plurality of lithium iron phosphate nano sheets layered together. A method for making a lithium iron phosphate hierarchical structure includes several steps. In the method, a lithium ion contained liquid solution, a ferrous ion contained liquid solution, and a phosphate ion contained liquid solution are respectively provided. A concentration of lithium ions in the lithium ion contained liquid solution is equal to or larger than 1.8 mol/L. The lithium ion contained liquid solution, the ferrous ion contained liquid solution, and the phosphate ion contained liquid solution are mixed to form a liquid mixture. The liquid mixture is heated in a sealed reactor to form the lithium iron phosphate hierarchical structure.