Abstract:
A display device has a pixel that is defined by a plurality of sub-pixels. The sub-pixels include a red sub-pixel representing red, a green sub-pixel representing green, a blue sub-pixel representing blue and a yellow sub-pixel representing yellow. When the pixel represents white, the luminance of the red sub-pixel is lower than its luminance corresponding to the highest gray scale level. In one embodiment, when the pixel represents white, the luminance of the red sub-pixel is preferably in the range of 25% to 96% of its luminance corresponding to the highest gray scale level. Also, the color temperature of white represented by the pixel is preferably higher than 4200 K, more preferably higher than 5000 K.
Abstract:
A double-sided display which can suitable carry out black display both in a well-lighted place and a dark place is provided. The following members are disposed in the B direction: a first polarizing plate (14) which allows only a linearly polarized light component to pass through; a liquid crystal layer (13) which, when a voltage is applied thereto, optically rotates and causes linearly polarized light in one direction to be linearly polarized light in the other direction, while, when no voltage is applied, does not alter the direction of the linearly polarized light; a polarizing selective reflector (16) which reflects the linearly polarized light in one direction while allows the linearly polarized light in the other direction to pass through; and a second polarizing plate (15) which absorbs the light in one direction while allows the light in the other direction to pass through. The polarizing selective reflector (16) is disposed only in the B direction of the liquid crystal layer (13). Double-sided image reproduction is realized by carrying out reflective image reproduction on the side in the A direction and carrying out transmission image reproduction on the side in the B direction.
Abstract:
A double-sided display which can suitable carry out black display both in a well-lighted place and a dark place is provided. The following members are disposed in the B direction: a first polarizing plate (14) which allows only a linearly polarized light component to pass through; a liquid crystal layer (13) which, when a voltage is applied thereto, optically rotates and causes linearly polarized light in one direction to be linearly polarized light in the other direction, while, when no voltage is applied, does not alter the direction of the linearly polarized light; a polarizing selective reflector (16) which reflects the linearly polarized light in one direction while allows the linearly polarized light in the other direction to pass through; and a second polarizing plate (15) which absorbs the light in one direction while allows the light in the other direction to pass through. The polarizing selective reflector (16) is disposed only in the B direction of the liquid crystal layer (13). Double-sided image reproduction is realized by carrying out reflective image reproduction on the side in the A direction and carrying out transmission image reproduction on the side in the B direction.
Abstract:
An antireflective member according to the present invention has an uneven surface pattern, in which unit structures are arranged in x and y directions at respective periods that are both shorter than the shortest wavelength of an incoming light ray, on the surface of a substrate and satisfies the following Inequality (1): Λ x , y λ min
Abstract:
A polarizing optical element changes its optical reflectance and/or transmittance according to a polarization state of incoming light. The optical element includes: a first grating layer including multiple striped portions that extend in a predetermined direction; and a second grating layer including multiple striped portions that extend in that predetermined direction. Average grating pitches of the first and second grating layers are both defined to be shorter than the wavelength of the incoming light. The first grating layer is made of a first material that exhibits a light reflecting property to the incoming light. The second grating layer is made of a second material that reduces the reflection of the incoming light from the first grating layer.
Abstract:
A double-sided display which can suitable carry out black display both in a well-lighted place and a dark place is provided. The following members are disposed in the B direction: a first polarizing plate (14) which allows only a linearly polarized light component to pass through; a liquid crystal layer (13) which, when a voltage is applied thereto, optically rotates and causes linearly polarized light in one direction to be linearly polarized light in the other direction, while, when no voltage is applied, does not alter the direction of the linearly polarized light; a polarizing selective reflector (16) which reflects the linearly polarized light in one direction while allows the linearly polarized light in the other direction to pass through; and a second polarizing plate (15) which absorbs the light in one direction while allows the light in the other direction to pass through. The polarizing selective reflector (16) is disposed only in the B direction of the liquid crystal layer (13). Double-sided image reproduction is realized by carrying out reflective image reproduction on the side in the A direction and carrying out transmission image reproduction on the side in the B direction.
Abstract:
A display panel (100) of an embodiment of the present invention includes a wiring board (100a), a counter substrate (100b) which is provided on a viewer side of the wiring board (100a), and a display medium layer (32) which is provided between the wiring board (100a) and the counter substrate (100b), wherein the wiring board (100a) includes a substrate (11) and a plurality of metal wires (GB, SB, CSB, etc.) provided on the counter substrate (100b) side of the substrate (11), and at least part of the plurality of metal wires has a moth-eye structure or inverted moth-eye structure (12M) in its surface.
Abstract:
A mold of an embodiment of the present invention has a surface that has a shape which is inverse of a surface shape of a moth-eye structure. This surface has a plurality of protrusions, a plurality of ridges extending between the plurality of protrusions via saddle portions, and a plurality of holes, each of which is defined by at least any three of the plurality of protrusions and ridges extending between the at least any three of the plurality of protrusions, and an average distance between centers of adjacent holes, p, and an average depth of the saddle portions, r, satisfy the relationship of 0.15≦r/p≦0.60.
Abstract translation:本发明的实施例的模具具有与飞蛾眼结构的表面形状相反的形状的表面。 该表面具有多个突起,多个突起,经由鞍座部分在多个突起之间延伸,以及多个孔,每个孔由多个突起和脊中的至少三个突起和脊在至少 多个突起中的任意三个以及相邻孔的中心之间的平均距离p以及鞍部的平均深度r满足关系:0.15≦̸ r / p≦̸ 0.60。
Abstract:
A display device is provided in which reduction of reflected light is realized. Also a multilayer substrate is provided in which light reflectance is reduced even when the substrate has a plurality of layers that differ in refractive index from each other. In the display device of one embodiment, the reflectance of light reflected by the internal structure, of light incident on the internal structure through a display screen, is less than 1.0%. The multilayer substrate of one embodiment includes a first layer and a second layer disposed adjacently to the first layer. The refractive index of the second layer varies continuously from an interface where the second layer is adjacent to the first layer in a direction from the first layer, with the variation being started at a value of the refractive index at the interface where the first layer is adjacent to the second layer.
Abstract:
The present invention provides a transflective display device capable of reducing a difference in white balance between transmissive display and reflective display. The display device of the present invention is a transflective display device including three or more filters having different colors in a pixel, each of the three or more filters having different colors, including: a transmissive region for displaying an image by transmitting light from a backlight; and a reflective region for displaying an image by reflecting surrounding light, wherein, in the reflective region of at least one of a plurality of filters having different colors used for displaying white in reflective display, a light-reducing film which reduces an amount of at least light having a peak wavelength of a visible light transmission spectrum of the at least one of a plurality of filters is arranged, and the visible light transmission spectrum is measured using a standard light source D65.