Abstract:
The present invention related to an offline transaction payment system and a method and apparatus for the same, which receives an electronic payment request from a terminal, transmits a request for execution of an electronic payment application to the terminal, receives an application ID from the electronic payment application executed in the terminal, performs member verification using the received application ID, transmits the member verification result to the electronic payment application, receives a one-time password from the electronic payment application, and mediates an electronic payment for a transaction that takes place offline using the one-time password.
Abstract:
The present invention relates to a battery module case, and more particularly, to a battery module case in which sub-battery modules are slidably mounted in a vertical or horizontal direction, wherein each sub-battery module comprises one or more battery cells, electrode tabs extending in one direction from the respective battery cells, and a pouched type case consisting of aluminum laminate sheets for covering the surfaces of the battery cells, except for the surfaces on which the electrode tabs are formed. The battery module case of the present invention is formed into an assembly type structure to be coupled to the outer surfaces of the sub-battery modules, wherein the outer surfaces include surfaces on which the electrode tabs are formed. At least two or more sub-battery modules are stacked and arranged in parallel, such that the surfaces on which the electrode tabs are formed are aligned in the same direction.
Abstract:
The RFID system includes an RFID reader for sending information selected from among collision type information, idle type information, and readable type information, to all of the RFID tags depending on the number of signals in the corresponding time slot, and RFID tags for performing functions, in which, when information, indicating that a current time slot is a collision type, is fed back from the RFID reader, each of RFID tags selects one arbitrary value of either 0 or 1 and is assigned a time slot, in which a corresponding RFID tag will send a signal to the RFID reader, based on the selected value, a single tag group that caused a collision is divided into two sub-groups depending on the assigned time slots, and tags of the sub-groups send signals, including IDs thereof, to the RFID reader in different time slots for the respective sub-groups.
Abstract:
In an etching method, a thin layer is formed on a first surface of a first substrate doped with first impurities having a first doping concentration. The thin layer is doped with second impurities having a second doping concentration lower than the first doping concentration. A second substrate is formed on the thin layer. A second surface of the first substrate is polished. The polished first substrate is cleaned using a cleaning solution including ammonia and deionized water. The cleaned first substrate is etched to expose the thin layer.
Abstract:
A sulfonated poly(arylene sulfone) contains an unsaturated bond. A cross-linked material may be formed from the sulfonated poly(arylene sulfone), and a clay nanocomposite may include the sulfonated poly(arylene sulfone) or the cross-linked material. A fuel cell includes the clay nanocomposite.
Abstract:
A mobile communication terminal includes a first transceiver that transmits and receives signals, an RFID transceiver that transmits and receives signals, and a controller that stops the first transceiver while it is performing signal communication, and activates the RFID transceiver.
Abstract:
The RFID system includes an RFID reader for sending information selected from among collision type information, idle type information, and readable type information, to all of the RFID tags depending on the number of signals in the corresponding time slot, and RFID tags for performing functions, in which, when information, indicating that a current time slot is a collision type, is fed back from the RFID reader, each of RFID tags selects one arbitrary value of either 0 or 1 and is assigned a time slot, in which a corresponding RFID tag will send a signal to the RFID reader, based on the selected value, a single tag group that caused a collision is divided into two sub-groups depending on the assigned time slots, and tags of the sub-groups send signals, including IDs thereof, to the RFID reader in different time slots for the respective sub-groups.
Abstract:
Methods of forming non-volatile memory devices include the steps of forming a semiconductor substrate having first and second floating gate electrodes thereon and an electrically insulating region extending between the first and second floating gate electrodes. A step is then performed to etch back the electrically insulating region to expose upper corners of the first and second floating gate electrodes. Another etching step is then performed. This etching step includes exposing upper surfaces and the exposed upper corners of the first and second floating gate electrodes to an etchant that rounds the exposed upper corners of the first and second floating gate electrodes. The step of etching back the electrically insulating region includes etching back the electrically insulating region to expose sidewalls of the first and second floating gate electrodes having heights ranging from about 30 Å to about 200 Å. The step of exposing the upper corners of the first and second floating gate electrodes to an etchant is followed by the step of etching back the electrically insulating region to expose entire sidewalls of the first and second floating gate electrodes.
Abstract:
A wafer having a dielectric layer and an electrode partially protruding from the top surface of the dielectric layer is provided. The dielectric layer is etched with a chemical solution such as LAL. Prior to etching, the protruding portion of the electrode is removed or reduced to prevent any bubbles included in the chemical solution from adhering to the electrode. Thus, the chemical solution can etch the dielectric layers without being blocked by any bubbles included in a chemical solution.
Abstract:
Methods of fabricating semiconductor devices including forming a mask pattern on a semiconductor substrate are provided. The mask pattern defines a first opening that at least partially exposes the semiconductor substrate and includes a pad oxide layer and a nitride layer pattern on the pad oxide layer pattern. The nitride layer has a line width substantially larger than the pad oxide layer pattern. A second opening that is connected to the first opening is formed by at least partially removing a portion of the semiconductor substrate exposed through the first opening. The second opening has a sidewall that has a first inclination angle and at least partially exposing the semiconductor substrate. A trench connected to the second opening is formed by etching a portion of the semiconductor substrate exposed through the second opening using the mask pattern as an etch mask. The trench is substantially narrower than the second opening and has a sidewall that has a second inclination angle that is substantially larger than the first inclination angle.