摘要:
Sulfur sensors are formed by coating a conductive substrate with ZnO microstructures that are reactive with sulfur in liquids, such as fuel, using MOCVD. The ZnO is changed to ZnS over time and causes the voltage across the sensors to change under a constant current by at least about 25%. The time required for such saturation to occur can then be correlated to a sulfur concentration in the liquid.
摘要:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a first MOS device of a first conductivity type and a second MOS device of a second conductivity type opposite the first conductivity type. The first MOS device includes a first gate dielectric on a semiconductor substrate; a first metal-containing gate electrode layer over the first gate dielectric; and a silicide layer over the first metal-containing gate electrode layer. The second MOS device includes a second gate dielectric on the semiconductor substrate; a second metal-containing gate electrode layer over the second gate dielectric; and a contact etch stop layer having a portion over the second metal-containing gate electrode layer, wherein a region between the portion of the contact etch stop layer and the second metal-containing gate electrode layer is substantially free from silicon.
摘要:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a first MOS device of a first conductivity type and a second MOS device of a second conductivity type opposite the first conductivity type. The first MOS device includes a first gate dielectric on a semiconductor substrate; a first metal-containing gate electrode layer over the first gate dielectric; and a silicide layer over the first metal-containing gate electrode layer. The second MOS device includes a second gate dielectric on the semiconductor substrate; a second metal-containing gate electrode layer over the second gate dielectric; and a contact etch stop layer having a portion over the second metal-containing gate electrode layer, wherein a region between the portion of the contact etch stop layer and the second metal-containing gate electrode layer is substantially free from silicon.
摘要:
A method of forming a gate structure is provided. The method includes providing a metal layer in the gate structure, the metal layer includes an oxygen-gettering composition. The metal layer getters oxygen from the interface layer, which may decrease the thickness of the interface layer. The gettered oxygen converts the metal layer to a metal oxide, which may act as a gate dielectric for the gate structure. A multi-layer metal gate structure is also provided including a oxygen-gettering metal layer, an oxygen-containing metal layer, and a polysilicon interface metal layer overlying a high-k gate dielectric.
摘要:
A semiconductor structure includes a first MOS device including a first gate, and a second MOS device including a second gate. The first gate includes a first high-k dielectric over a semiconductor substrate; a second high-k dielectric over the first high-k dielectric; a first metal layer over the second high-k dielectric, wherein the first metal layer dominates a work-function of the first MOS device; and a second metal layer over the first metal layer. The second gate includes a third high-k dielectric over the semiconductor substrate, wherein the first and the third high-k dielectrics are formed of same materials, and have substantially a same thickness; a third metal layer over the third high-k dielectric, wherein the third metal layer and the second metal layer are formed of same materials, and have substantially a same thickness; and a fourth metal layer over the third metal layer.
摘要:
The present invention provides a method and apparatus for fast 3D ultrasound imaging. The method comprises data acquisition, desired data selection, data smoothing, table construction, ray casting, table look-up, ray synthesis and final result output. The apparatus comprises an acquisition module, a selection module, a smoothing module, a construction module, a ray casting module, a table look-up module, a synthesis module and an output module. The present invention can avoid a huge amount of unnecessary reconstruction calculations by smoothing preprocessing and constructing the reconstruction table and the gradient table as well as transforming coordinates of the points where necessary. The present invention has greater practical applicability, because the existing imaging technology demands that the radius for rotating the probe be identical to the radius of the probe.
摘要:
A browser-enabled device includes a browser-based user interface and control architecture, which has a browser core, a browser framework, and a user interface. The user interface is written using a markup language. In processing event registrations, the browser framework receives an event registration. The received event registration having a response unique resource identifier (URI) content and a priority field. The priority field of the received event registration is examined to determine priority of the received event registration. If the browser core is loading the response URI content of a prior event registration and if the priority of the received event registration is higher than the priority of the prior event registration, then the loading of the response URI content of the prior event registration is halted, and loading of the response URI content of the received event registration is begun.
摘要:
A precision approach path indicator system (PAPI) including multiple LHA indicators and power sources. Each LHA indicator comprises several assembly modules, with each module made up of several red and white LEDs, several collimating lens, one optical combiner, and one projection lens set. From a side view of the module, the red LEDs are placed on top of white LEDs, with a collimating lens in front of each LED. The optical combiner is in front of both the red and white LEDs, slightly above the white LEDs in vertical placement. The optical combiner has a reflective coating on the bottom surface, and a red light filter coating on the projection surface. The combined beam of light is projected out through a projection lens at front of the assembly module.