摘要:
A method of forming a gate structure is provided. The method includes providing a metal layer in the gate structure, the metal layer includes an oxygen-gettering composition. The metal layer getters oxygen from the interface layer, which may decrease the thickness of the interface layer. The gettered oxygen converts the metal layer to a metal oxide, which may act as a gate dielectric for the gate structure. A multi-layer metal gate structure is also provided including a oxygen-gettering metal layer, an oxygen-containing metal layer, and a polysilicon interface metal layer overlying a high-k gate dielectric.
摘要:
A method of forming a gate structure is provided. The method includes providing a metal layer in the gate structure, the metal layer includes an oxygen-gettering composition. The metal layer getters oxygen from the interface layer, which may decrease the thickness of the interface layer. The gettered oxygen converts the metal layer to a metal oxide, which may act as a gate dielectric for the gate structure. A multi-layer metal gate structure is also provided including a oxygen-gettering metal layer, an oxygen-containing metal layer, and a polysilicon interface metal layer overlying a high-k gate dielectric.
摘要:
A method is provided that allows for maintaining a desired equivalent oxide thickness (EOT) by reducing the thickness of an interfacial layer in a gate structure. An interfacial layer is formed on a substrate, a gate dielectric layer such as, a high-k gate dielectric, is formed on the interfacial layer. A gettering layer is formed on the substrate overlying the interfacial layer. The gettering layer may function to getter oxygen from the interfacial layer such that the interfacial layer thickness is decreased and/or restricted from growth.
摘要:
A method is provided that allows for maintaining a desired equivalent oxide thickness (EOT) by reducing the thickness of an interfacial layer in a gate structure. An interfacial layer is formed on a substrate, a gate dielectric layer such as, a high-k gate dielectric, is formed on the interfacial layer. A gettering layer is formed on the substrate overlying the interfacial layer. The gettering layer may function to getter oxygen from the interfacial layer such that the interfacial layer thickness is decreased and/or restricted from growth.
摘要:
Provided are methods of patterning metal gate structures including a high-k gate dielectric. In an embodiment, a soluble hard mask layer may be used to provide a masking element to pattern a metal gate. The soluble hard mask layer may be removed from the substrate by water or a photoresist developer. In an embodiment, a hard mask including a high-k dielectric is formed. In a further embodiment, a protection layer is formed underlying a photoresist pattern. The protection layer may protect one or more layers formed on the substrate from a photoresist stripping process.
摘要:
A metal-oxide-semiconductor field-effect transistors (MOSFET) having localized stressors is provided. In accordance with embodiments of the present invention, a transistor comprises a high-stress film over the source/drain regions, but not over the gate electrode. The high-stress film may be a tensile-stress film for use with n-channel devices or a compressive-stress film for use with p-channel devices. A method of fabricating a MOSFET with localized stressors over the source/drain regions comprises forming a transistor having a gate electrode and source/drain regions, forming a high-stress film over the gate electrode and the source/drain regions, and thereafter removing the high-stress film located over the gate electrode, thereby leaving the high-stress film located over the source/drain regions. A contact-etch stop layer may be formed over the transistor.
摘要:
Provided are methods of patterning metal gate structures including a high-k gate dielectric. In an embodiment, a soluble hard mask layer may be used to provide a masking element to pattern a metal gate. The soluble hard mask layer may be removed from the substrate by water or a photoresist developer. In an embodiment, a hard mask including a high-k dielectric is formed. In a further embodiment, a protection layer is formed underlying a photoresist pattern. The protection layer may protect one or more layers formed on the substrate from a photoresist stripping process.
摘要:
A metal-oxide-semiconductor field-effect transistors (MOSFET) having localized stressors is provided. In accordance with embodiments of the present invention, a transistor comprises a high-stress film over the source/drain regions, but not over the gate electrode. The high-stress film may be a tensile-stress film for use with n-channel devices or a compressive-stress film for use with p-channel devices. A method of fabricating a MOSFET with localized stressors over the source/drain regions comprises forming a transistor having a gate electrode and source/drain regions, forming a high-stress film over the gate electrode and the source/drain regions, and thereafter removing the high-stress film located over the gate electrode, thereby leaving the high-stress film located over the source/drain regions. A contact-etch stop layer may be formed over the transistor.
摘要:
A preferred embodiment of the invention provides a semiconductor fabrication method. An embodiment comprises forming a MOS device having sidewall spacers. A highly stressed layer is deposited over the device. The stress is selectively adjusted in that portion of the layer over the gate electrode and the sidewall spacers. Preferably, the stress layer over the gate electrode and over the sidewall spacers is adjusted from a first stress to a second stress, wherein the first stress is one of tensile and compressive, and the second stress is the other of tensile and compressive. Preferred embodiments selectively induce a suitable stress within PMOS and NMOS channel regions for improving their respective carrier mobility. Still other embodiments of the invention comprise a field effect transistor (FET) having a overlying stressed layer, the stressed layer being comprised of different stress regions.
摘要:
A method of forming tensile stress films for NFET Performance enhancement, comprising the steps of: (a) providing a semiconductor substrate having a gate structure patterned thereon; (b) performing a deposition process to form a first dielectric film overlying the semiconductor substrate and covering the gate structure; (c) performing a curing process on the first dielectric film; (d) successively repeating the step (b) of deposition process and the step (c) of curing process at least once to form at least one second dielectric film on the first dielectric film until the total thickness of the first dielectric film and the at least one second dielectric film reaches a target thickness.