Abstract:
An inspecting apparatus and method including first and second illuminating units for illuminating a surface of a specimen to be inspected with different incident angles and first and second detecting optical units arranged at different elevation angle directions to the surface of the specimen for detecting images of the specimen illuminated by the first and second illuminating units.
Abstract:
A method for detecting defects on an object includes an illumination optical unit which obliquely projects a laser focused onto a line on a surface of the object and white-color, a table unit which mounts the specimen and which is movable, a detection optical unit which detects with an image sensor an image of light formed by light reflected from the object and passed through a filter which blocks diffraction light resulting from patterns formed on the object, a signal processor which processes a signal outputted from the image sensor of the detection optical unit to extract defects of the object, and a display unit which displays information of defects extracted by the signal processor. The filter is adjustable.
Abstract:
An inspecting apparatus and method including first and second illuminating units for illuminating a surface of a specimen to be inspected with different incident angles and first and second detecting optical units arranged at different elevation angle directions to the surface of the specimen for detecting images of the specimen illuminated by the first and second illuminating units.
Abstract:
An inspection apparatus projects a laser beam on the surface of a SOI wafer and detects foreign matter on and defects in the surface of the SOI wafer by receiving scattered light reflected from the surface of the SOI wafer. The wavelength of the laser beam used by the inspection apparatus is determined so that a penetration depth of the laser beam in a Si thin film may be 10 nm or below to detect only foreign matter on and defects in the outermost surface and not to detect foreign matter and defects in a BOX layer. Only the foreign matter on and defects in the outermost surface layer can be detected without being influenced by thin-film interference by projecting the laser beam on the surface of the SOI wafer and receiving scattered light rays.
Abstract:
A method and apparatus of inspecting a sample, in which the sample is inspected under a plurality of inspection conditions, and inspection data obtained by inspecting the sample under each of the plurality of inspection conditions and position information on the sample of the inspection date in correspondence with the respective inspection conditions, are stored. The inspection data for each of the plurality of inspection conditions is against each other by the use of the position information on the sample to determine a position to be inspected in detail, and an image of the sample at a position to be inspected in detail is obtained. The obtained image is classified, the inspection condition of the sample by the use of information of classification of the image is determined.
Abstract:
A defect inspection apparatus includes an illumination optical unit for obliquely illuminating an object with a slit-like shaped laser, a first detection optical unit for detecting a first image formed by light reflected from the object by the illumination of the slit-like shaped laser and reflected in a first direction substantially normal to a surface of the object, a second detection optical unit for detecting a second image formed by light reflected from the object by the illumination of the slit-like shaped laser and reflected in a second direction inclined to the normal direction to the surface of the object, an image signal processing unit which processes a signal outputted from the first detection optical unit and a signal outputted from the second detection optical unit, and an output unit which outputs information processed by the image signal processing unit.
Abstract:
A defects inspecting apparatus having: a scanning stage for running into a predetermined direction while mounting an inspection target substrate thereon; an illumination optic system for irradiating an illumination light beam upon a surface of the inspection target substrate at a predetermined angle inclined thereto; a detection optic system including, an upper-directed photo-detector for receiving upper-directed reflected/scattered lights emitting upwards from the inspection target substrate, thereby converting them into an upper-directed image signal, and a side-directed photo-detector for receiving side-directed reflected/scattered lights emitting for the inspection target substrate into an inclined direction, so as to flatly intersects the illumination light beam, and thereby converting into a side-directed image signal; and a signal processing system-for detecting defects upon basis of the upper-directed image signal and the side-directed image signal.
Abstract:
An apparatus for optically inspecting particles and/or defects correlates sizes of particles and/or defects to a cause of failure in an inspection result. A data processing circuit points out a cause of failure from the statistics on the inspection result, and displays information on the inspection result. A failure analysis is conducted by setting a threshold for identifying a failure in each of regions on a semiconductor device or the like to statistically evaluate detected particles.
Abstract:
The present invention provides an inspection apparatus and inspection method. The inspection apparatus includes a stage mechanism for supporting an object under inspection. A spatial filter is provided in the detection optical system to inspect the object. A printer is used to print the results of the spatial filter. The spatial filter can be provided in the form of a Fourier transformed image.
Abstract:
An inspection apparatus projects a laser beam on the surface of a SOI wafer and detects foreign matter on and defects in the surface of the SOI wafer by receiving scattered light reflected from the surface of the SOI wafer. The wavelength of the laser beam used by the inspection apparatus is determined so that a penetration depth of the laser beam in a Si thin film may be 10 nm or below to detect only foreign matter on and defects in the outermost surface and not to detect foreign matter and defects in a BOX layer. Only the foreign matter on and defects in the outermost surface layer can be detected without being influenced by thin-film interference by projecting the laser beam on the surface of the SOI wafer and receiving scattered light rays.