Abstract:
In some embodiments, a UE is configured to, in response to detecting an absence of received packets associated with a voice call over a first time interval of a pre-determined length, initiate transmission of a first control packet to a base station. In some embodiments, the UE is further configured, based on a response to the first control packet, not to drop the packet-switched voice call at least until expiration of a second time interval of a pre-determined length after transmission of the first control packet. In some embodiments, the absence of received packets is an absence of both voice and silence packets. In some embodiments, based on absence of a response to the first control packet, the UE is configured to drop the packet-switched call.
Abstract:
Systems and methods that enhance radio link performance in a multi-carrier environment. A method may be performed by a UE that includes scanning a plurality of carrier components for a primary cell, determining a first bandwidth of the primary cell, scanning for a secondary cell, determining a second bandwidth of the secondary cell, determining a maximum aggregated bandwidth by combining the first bandwidth and the second bandwidth and when the maximum aggregated bandwidth exceeds a bandwidth capability of the UE, performing a cell selection procedure to select one of the primary cell or the secondary cell based on a higher of the first bandwidth and the second bandwidth.
Abstract:
This disclosure relates to techniques for multi-RAT and DSDA capable wireless devices to handle frame blanking in a wireless communication system. A wireless device may establish wireless links according to a first radio access technology and a second radio access technology. The wireless device may determine to perform transmit and receive blanking for one or more antennas of the wireless device for the first radio access technology to perform sounding reference signal transmissions for the second radio access technology based at least in part on a band combination for the wireless links. The wireless device may determine a modification to channel state feedback reporting for the first radio access technology based at least in part on the transmit and receive blanking. The wireless device may perform channel state feedback reporting using the determined modification.
Abstract:
This disclosure relates to techniques for multi-RAT and DSDA capable wireless devices to handle frame blanking in a wireless communication system. A wireless device may establish wireless links according to a first radio access technology and a second radio access technology. The wireless device may determine to perform transmit and receive blanking for one or more antennas of the wireless device for the first radio access technology to perform sounding reference signal transmissions for the second radio access technology based at least in part on a band combination for the wireless links. The wireless device may determine a modification to channel state feedback reporting for the first radio access technology based at least in part on the transmit and receive blanking. The wireless device may perform channel state feedback reporting using the determined modification.
Abstract:
A user equipment (UE) has a cellular connection established by a cellular chip, the cellular connection including a secondary component carrier (SCC) of carrier aggregation (CA) in the unlicensed spectrum. The UE receives, by a WiFi chip of the UE, a message from the cellular chip indicating a first frequency band corresponding to the SCC, determines whether a hotspot service is enabled utilizing at least a portion of the first frequency band that the cellular chip has indicated corresponds to the SCC and when the hotspot service is enabled, switches, by the WiFi chip, the hotspot service from the first frequency band to a second frequency band.
Abstract:
This disclosure relates to providing a reservation signal for cellular communication in unlicensed spectrum. A cellular base station may perform a listen-before-talk procedure on an unlicensed frequency channel. The cellular base station may transmit a reservation signal on the unlicensed frequency channel after successfully performing the listen-before-talk procedure. The cellular base station may perform carrier sensing on the unlicensed frequency channel at least once during the duration of the reservation signal. The cellular base station may perform cellular communication on the unlicensed frequency channel after ceasing transmitting the reservation signal.
Abstract:
A device and method for throttling carrier aggregation (CA) in a device connected to a CA enabled network. The method includes determining that a carrier aggregation state of the device is enabled by a network component of a CA enabled network to which the device is connected, determining at least one condition indicating that the carrier aggregation functionality is unnecessary, generating a throttling indication to indicate to the network that a secondary serving cell (SCell) providing a secondary component carrier (SCC) in the carrier aggregation functionality is to be disabled and transmitting the throttling indication to the network component.
Abstract:
Techniques for coalescing alert notifications for applications and/or services to a primary user device of a set of multiple associated user devices within proximity of each other. When a user device is not in proximity to other associated user devices, the user device functions as a primary user device and provides alert notifications based on a default configuration and/or a user configurable setting. When the user device is within proximity of one or more other associated user devices, the user devices exchange relevant capability information and information for applications that are synchronized via network-based services. The user devices negotiate to determine a user device that serves as the primary user device to provide alert notifications for a set of applications and services common to a set of user devices. The other user devices are configured to reduce and/or suppress the alert notifications.
Abstract:
This disclosure relates to techniques for enabling a user equipment (UE) to determine which cell to attach to in a heterogeneous network (HetNet). The UE may determine, based on the quality of the downlink (DL) channel and/or on the type of traffic between the UE and a current base station, whether to attach to a small cell base station or an overlay macro base station in the cellular network. Particularly, the UE may determine whether to use a received mobility offset during cell reselection in response to a measured quality of the DL channel.
Abstract:
Systems, methods, and apparatuses disclosed herein can mitigate transmitting latency to improve the quality of a voice or the video call. These systems, methods, and apparatuses reset a transmitting latency timer upon retrieving a packet from a transmitting buffer. Thereafter, these systems, methods, and apparatuses start the count of the transmitting latency timer as the packet is being processed. And these systems, methods, and apparatuses compare the transmitting latency timer e with a transmitting latency threshold as these systems, methods, and apparatuses are processing a packet for transmission. These systems, methods, and apparatuses can drop the packet and/or can select another packet for processing in response to the transmitting latency timer exceeding the transmitting latency threshold to mitigate the transmitting latency.