Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
This disclosure relates to techniques for coordinated channel state information reporting in a wireless communication system. A wireless device may establish a wireless link with a cellular base station. The wireless device may determine to coordinate channel state information reporting with another wireless device. Information may be exchanged with the other wireless device via a sidelink wireless link. The wireless device may provide channel state information to the cellular base station. The channel state information may be determined based at least in part on the information exchanged with the other wireless device via the sidelink wireless link.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
Systems and methods for determining fine grain motions and vibrations of live and/or inanimate objects are described based on using a radar system. For example, biometric information may be extracted from such vibrations associated with a live object. In different embodiments, processing circuitry may perform different statistical analysis on reflections from the objects. Moreover, the processing circuitry may perform different processing functions based on the statistical analysis to determine the vibrations with high accuracy. Furthermore, the processing circuitry may also select one or multiple target maps based on a field of view of the radar system for a more robust measurement of the vibrations associated with one or multiple objects.
Abstract:
This disclosure relates to methods for low latency orthogonal frequency division multiple access communication, according to some embodiments. A wireless device may determine to communicate with another wireless device on a frequency channel as a pair of wireless devices. The wireless device may coordinate with a set of wireless device pairs to share medium access on the frequency channel. The wireless device communicate with the paired wireless device on the frequency channel in a frequency division multiplexing configuration with the set of wireless device pairs.
Abstract:
Systems and methods for determining fine grain motions and vibrations of live and/or inanimate objects are described based on using a radar system. For example, biometric information may be extracted from such vibrations associated with a live object. In different embodiments, processing circuitry may perform different statistical analysis on reflections from the objects. Moreover, the processing circuitry may perform different processing functions based on the statistical analysis to determine the vibrations with high accuracy. Furthermore, the processing circuitry may also select one or multiple target maps based on a field of view of the radar system for a more robust measurement of the vibrations associated with one or multiple objects.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An interface circuit in an electronic device may contend for access to a shared communication channel on behalf of the electronic device and a recipient electronic device, where the access has a duration. Then, the electronic device may provide a schedule frame intended for the recipient electronic device that includes information that specifies one or more time slots during the duration that are associated with the recipient electronic device and one or more communication functions of the recipient electronic device in the one or more time slots. Moreover, the electronic device may provide a data frame with data intended for the recipient electronic device. In response, the electronic device may receive a response frame associated with the recipient electronic device, where the response frame is received during at least one of the one or more time slots.
Abstract:
An apparatus such as a wireless communication device (UE) may include first circuitry configured to conduct wireless communications according to a first radio access technology (RAT) in a first frequency band and in a second frequency band, where the first RAT is a cellular RAT, the first frequency band is in an unlicensed spectrum, and the second frequency band is in a licensed spectrum. The apparatus may include second circuitry configured to conduct wireless communications according to a second RAT in the first frequency band, wherein the second RAT is a wireless local area network (WLAN) RAT. The apparatus may be configured to determine to perform a scan operation in the first frequency band using the first circuitry and, based on one or more transmissions by the second circuitry using the first frequency band, adjust one or more parameters for the scan measurement by the first circuitry. The cellular communications in the first frequency band may be LAA communications, for example.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.