Abstract:
Apparatus and methods to support parallel communication using multiple subscriber identities in a wireless communication device via multiple subscriber identity modules (SIMs) are disclosed. A representative method includes establishing a connection with a first wireless network via a first wireless cellular protocol software stack for a first subscriber identity associated with a first subscriber identity module; registering with a second wireless network via a second wireless cellular protocol software stack for a second subscriber identity associated with a second subscriber identity module; and receiving radio frequency signals from the second wireless network via the second wireless cellular protocol software stack in parallel with communicating with the first wireless network via the first wireless cellular protocol software stack. The first and second wireless cellular protocol software stacks share at least a portion of radio frequency wireless circuitry for communicating with the first and second wireless network respectively.
Abstract:
Apparatus and methods to support multiple subscriber identities in a wireless communication device are disclosed. A representative method includes the wireless communication device communicating with a first wireless network via a first wireless cellular protocol software stack for a first subscriber identity provided by a first subscriber identity module; communicating with a second wireless network via a second wireless cellular protocol software stack for a second subscriber identity provided by a second subscriber identity module; and sharing mobility management tasks between the first and second wireless cellular protocol software stacks when the first and second subscriber identity modules are each associated with the same wireless network provider either as a serving carrier or as a roaming carrier. Mobility management tasks that are shared include one or more of paging channel monitoring, measuring a serving cell and/or neighbor cells, evaluating cell reselection and handover options, and reading broadcast channels.
Abstract:
Apparatus and methods to reuse wireless circuitry to communicate with multiple wireless networks to support multiple subscriber identities in a wireless communication device are disclosed. A representative method includes receiving signaling messages for a second subscriber identity from a second wireless network while connected to a first wireless network for a first subscriber identity. A portion of radio frequency wireless circuitry is reconfigured to communicate with the second wireless network to establish a signaling channel and respond to signaling messages received from the second wireless network. The portion of radio frequency wireless circuitry is reconfigured between the first and second wireless networks to maintain a connection with the first wireless network while also receiving from the second wireless network limited information that can be provided to a user. Representative information includes an indication of an originator of a mobile terminated connection request and short message service data.
Abstract:
A method, system, and apparatus are described for managing a device in a mixed wireless communication system. A device may decide to scan or not scan for a cell based on (or at least on) updating information. The updating information may be used together or individually. The updating information may be maintaining a time window in conjunction with a device's motion status, maintaining a list that tracks cell identity in areas of non-service, or utilizing network deployment information.
Abstract:
Generating and using a device-type specific preferred public land mobile network (PLMN) list for roaming PLMN selection. Wireless devices sharing one or more common characteristics may be tasked with collecting roaming PLMN selection data. That data may be collected and used to generate a preferred PLMN list specific to wireless devices sharing those common characteristics. The preferred PLMN list may be distributed to wireless devices sharing those common characteristics, which may then use it in conjunction with roaming PLMN selection.
Abstract:
Generating and using a device-type specific preferred public land mobile network (PLMN) list for roaming PLMN selection. Wireless devices sharing one or more common characteristics may be tasked with collecting roaming PLMN selection data. That data may be collected and used to generate a preferred PLMN list specific to wireless devices sharing those common characteristics. The preferred PLMN list may be distributed to wireless devices sharing those common characteristics, which may then use it in conjunction with roaming PLMN selection.
Abstract:
Generating and using a device-type specific preferred public land mobile network (PLMN) list for roaming PLMN selection. Wireless devices sharing one or more common characteristics may be tasked with collecting roaming PLMN selection data. That data may be collected and used to generate a preferred PLMN list specific to wireless devices sharing those common characteristics. The preferred PLMN list may be distributed to wireless devices sharing those common characteristics, which may then use it in conjunction with roaming PLMN selection.
Abstract:
A method for reducing network service scan time by a wireless communication device is provided. The method can include the wireless communication device determining a location of the wireless communication device. The method can further include the wireless communication devices selecting a subset of RATs supported by the wireless communication device based at least in part on the location of the wireless communication device and on deployment mapping information. The selected subset can include only one or more RATs indicated by the deployment mapping information to be deployed in the location of the wireless communication device. The method can further include the wireless communication device performing a service scan for at least one RAT included in the selected subset. Any RAT of the RATs supported by the wireless communication device that is not included in the selected subset can be excluded from the service scan.
Abstract:
Systems and methods for reducing collisions of transmission data for a first subscriber (e.g., a voice subscriber) with transmission data for a second subscriber (e.g., a data subscriber) at a dual sim dual active (DSDA) user equipment (UE) are described herein. A DSDA UE may be configured to implement a modified skipUplinkTxDynamic feature that avoids collisions by buffering transmission data of the data subscriber and sending a (later) scheduling request (SR) for a grant for that data. A DSDA UE may regulate data subscriber transmissions to avoid a transmission duration for the voice subscriber. A DSDA UE may reduce certain transmissions for a voice subscriber (subject to a block error rate (BLER) threshold for the voice subscriber) to lower the probability of collision. A DSDA UE may operate a data subscriber and a voice subscriber in the same cell to avoid collisions due to RF tuning and/or relative slot overlap.
Abstract:
This disclosure relates to techniques for multi-RAT and DSDA capable wireless devices to handle frame blanking in a wireless communication system. A wireless device may establish wireless links according to a first radio access technology and a second radio access technology. The wireless device may determine to perform transmit and receive blanking for one or more antennas of the wireless device for the first radio access technology to perform sounding reference signal transmissions for the second radio access technology based at least in part on a band combination for the wireless links. The wireless device may determine a modification to channel state feedback reporting for the first radio access technology based at least in part on the transmit and receive blanking. The wireless device may perform channel state feedback reporting using the determined modification.