Abstract:
An electronic device may have a flexible display. The display may have portions that are bent along a bend axis. The display may have display circuitry such as an array of display pixels in an active area and signal lines, thin-film transistor support circuitry and other display circuitry in an inactive area of the display surrounding the active area. The display circuitry may be formed on a substrate such as a flexible polymer substrate. The flexible polymer substrate may be formed by depositing polymer on a support structure that has raised portions. The raised portions may create locally thinned regions in the flexible polymer substrate. The reduced thickness of the flexible polymer substrate in the thinned regions may help ensure that a neutral stress plane that is associated with bending the display along the bend axis is aligned with the display circuitry, thereby minimizing stress in the display circuitry.
Abstract:
An organic light-emitting diode display may have an array of pixels. Each pixel may have an organic light-emitting diode with an anode and cathode. The anodes may be formed from a patterned layer of metal. Thin-film transistor circuitry in the pixels may include transistors such as drive transistors and switching transistors. Data lines may supply data signals to the pixels and horizontal control lines may supply control signals to the gates of the transistors. A switching transistor may be coupled between a voltage initialization line and each anode. The voltage initialization lines and capacitor structures in the thin-film transistor circuitry may be formed using a layer of metal that is different than the layer of metal that forms the anodes.
Abstract:
An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing the display with bent edge portions having neutral plane adjustment features that facilitate bending of the bent edge portions while minimizing damage to the bent edge portions. The neutral plane adjustment features may include a modified backfilm layer of the display in which portions of the backfilm layer are removed in a bend region. A display device may include a substrate, a display panel on the substrate having display pixels, and peripheral circuitry proximate the display panel and configured to drive the display pixels. A portion of the periphery of the substrate may be bent substantially orthogonal to the display panel to reduce an apparent surface area of the display device. The bent portion may include an electrode for communication with the peripheral circuitry.
Abstract:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may have a light-emitting diode that emits light under control of a drive transistor. Each display pixel may also have control transistors for compensating and programming operations. The array of display pixels may have rows and columns. Row lines may be used to apply row control signals to rows of the display pixels. Column lines (data lines) may be used to apply display data and other signals to respective columns of display pixels. A bottom conductive shielding structure may be formed below each drive transistor. The bottom conductive shielding structure may serve to shield the drive transistor from any electric field generated from the adjacent row and column lines. The bottom conductive shielding structure may be electrically floating or coupled to a power supply line.
Abstract:
Embodiments of the present disclosure relate to display devices and methods for manufacturing display devices. Specifically, embodiments of the present disclosure employ an enhanced etching process to create uniformity in the gate insulator of thin-film-transistor (TFTs) by using an active layer to protect the gate insulator from inadvertent etching while patterning an etch stop layer.
Abstract:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may have a light-emitting diode that emits light under control of a drive transistor. Each display pixel may also have control transistors for compensating and programming operations. The array of display pixels may have rows and columns. Row lines may be used to apply row control signals to rows of the display pixels. Column lines (data lines) may be used to apply display data and other signals to respective columns of display pixels. Display driver circuitry may simultaneously compensate multiple rows of the display pixels for drive transistor threshold voltage variations by supplying a common reference voltage over the data lines during a common compensation period. The display data may then be loaded into the rows sequentially before simultaneously commencing emission in each of the compensated and programmed rows.
Abstract:
An electronic device may include a display having an array of organic light-emitting diode display pixels that produce light that forms an image. Color filter elements may be used to allow the display to present color images. Each display pixel may have a red subpixel, a blue subpixel, a green subpixel, and a white subpixel. To adjust the color coordinates of the white pixel and thereby ensure that the light from the white pixel has a desired white point, part of the white subpixel may be overlapped by an area of colored color filter material. The white subpixel may, for example have a rectangular white area within which a patch of blue color filter material may be provided to make the white light from the white subpixel more bluish than it would be without the patch of blue color filter material.
Abstract:
An electronic device may have a flexible display with portions that are bent along a bend axis. The display may have display circuitry such as an array of display pixels in an active area. Contact pads may be formed in an inactive area of the display. Signal lines may couple the display pixels to the contact pads. The signal lines may overlap the bend axis in the inactive area of the display. During fabrication, an etch stop may be formed on the display that overlaps the bend axis. The etch stop may prevent over etching of dielectric such as a buffer layer on a polymer flexible display substrate. A layer of polymer that serves as a neutral stress plane adjustment layer may be formed over the signal lines in the inactive area of the display. Upon bending, the neutral stress plane adjustment layer helps prevent stress in the signal lines.
Abstract:
An organic light emitting diode display includes an array of pixels on a substrate. Each pixel includes three sub-pixels that emits light of different wavelengths from each other. The display includes thin film transistors (TFTs) for the sub-pixels on the substrate. Each TFT is separated from each other by a first pixel defining layer. The display also includes a first pixel electrode connected to the TFT for each sub-pixel, a tuning layer on the first pixel electrode, where the tuning layer has a thickness for each sub-pixel such that each sub-pixel has a optical-path length different from another sub-pixel. The display further includes an organic light emitting layer disposed over the tuning layer, and a second pixel defining layer covering a first end of the tuning layer and a second end of the tuning layer opposing to the first end of the tuning layer, and exposing the light emitting layer.
Abstract:
An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing conductive structures that pass through polymer layers of the display and/or conductive structures that wrap around an edge of the display and couple conductive traces on the display to conductive traces on additional circuitry that is mounted behind the display.