Abstract:
Embodiments of automated closed apparatus for cell therapy manufacturing are provided herein. In some embodiments, an automated closed apparatus for cell therapy manufacturing includes: a master device having a master controller for processing control programs for a variety of cell types; an input device fluidly coupled to the master device, wherein the input device is configured to feed an initial plurality of cells to the master device; one or more auxiliary devices each configured to perform one or more cell therapy manufacturing steps to the initial plurality of cells to form a final plurality of cells; and an output device coupled to the master device configured to collect the final plurality of cells from the master device.
Abstract:
Systems and methods for controlling device performance variability during manufacturing of a device on wafers are disclosed. The system includes a process platform, on-board metrology (OBM) tools, and a first server that stores a machine-learning based process control model. The first server combines virtual metrology (VM) data and OBM data to predict a spatial distribution of one or more dimensions of interest on a wafer. The system further comprises an in-line metrology tool, such as SEM, to measure the one or more dimensions of interest on a subset of wafers sampled from each lot. A second server having a machine-learning engine receives from the first server the predicted spatial distribution of the one or more dimensions of interest based on VM and OBM, and also receives SEM metrology data, and updates the process control model periodically (e.g., wafer-to-wafer, lot-to-lot, chamber-to-chamber etc.) using machine learning techniques.
Abstract:
A plurality of energy filter values are obtained using a model that simulates potential distribution within a 3D feature when an electron beam of an SEM impinges on a selected area that includes the 3D feature. A correspondence is extracted between the plurality of energy filter values and respective depths of the 3D feature along a longitudinal direction by analyzing the simulated potential distribution. A plurality of SEM images of the 3D feature corresponding to the plurality of energy filter values are obtained. The plurality of SEM images are associated with their respective depths based on the extracted correspondence between the plurality of energy filter values and the respective depths. A composite 3D profile of the 3D feature is generated from the plurality of SEM images obtained from various depths of the 3D feature.
Abstract:
A system for processing a substrate is provided. The system includes a process chamber including one or more sidewalls enclosing a processing region; and a substrate support. The system further includes a passageway connected to the process chamber; and a first particle detector disposed at a first location along the passageway. The first particle detector includes an energy source configured to emit a first beam; one or more optical devices configured to direct the first beam along one or more paths, where the one or more paths extend through at least a portion of the passageway. The first particle detector further includes a first energy detector disposed at a location other than on the one or more paths. The system further includes a controller configured to communicate with the first particle detector, wherein the controller is configured to identify a fault based on signals received from the first particle detector.
Abstract:
Embodiments of the disclosure provide a metrology system. In one example, a metrology system includes a laser source adapted to transmit a light beam, a lens adapted to receive at least a portion of the light beam from the laser source, a first beam splitter positioned to receive at least the portion of the light beam passing through the lens, a first beam displacing device adapted to cause a portion of the light beam received from the beam splitter to be split into two or more sub-light beams a first recording device having a detection surface, and a first polarizer that is positioned between the first displacing device and the first recording device, wherein the first polarizer is configured to cause the two or more sub-light beams provided from the first displacing device to form an interference pattern on the detection surface of the first recording device.
Abstract:
Embodiments of the present invention relate to an apparatus for providing processing gases to a process chamber with improved uniformity. One embodiment of the present invention provides a gas delivery assembly. The gas delivery assembly includes a hub, a nozzle, and one or more gas diffusers disposed in the nozzle. The nozzle has a cylindrical body with a side wall and a top surface. A plurality of injection passages are formed inside the nozzle to deliver processing gases into the process chamber via a plurality of outlets disposed in the side wall. The injection passages are configured to direct process gases out of each outlet disposed in the side wall in a direction which is not radially aligned with a centerline of the hub.