摘要:
A process control technique for upgrading C.sub.3 -C.sub.4 hydrocarbon feed containing olefins to produce heavier liquid hydrocarbons comprising converting a major portion of C.sub.3 -C.sub.4 olefins in an oligomerization zone by contacting a shape selective medium pore zeolite catalyst at elevated temperature and pressure to make distillate and olefinic gasoline. The oligomerization stage effluent is fractionated to provide distillate and gasoline product and a C.sub.3 -C.sub.4 intermediate stream containing isobutane and unconverted propene and butylene. The C.sub.3 -C.sub.4 intermediate stream is combined under control with a portion of C.sub.3 -C.sub.4 feed and further converting the combined streams in an alkylation zone to make heavier paraffinic hydrocarbons. The olefin feed may be produced by catalytically converting methanol or similar oxygenated hydrocarbons in a known process. Controlled material balance is achieved by accumulating liquid olefin feed to the oligomerization and akylation units using a surge drum with liquid level control. By-product isobutane is recovered and recycled under liquid level control operatively connected to determine feed of liquid olefin to the conversion units.
摘要:
Aliphatic oxygenates are converted to high octane gasoline by an integrated process wherein three reaction zones are utilized. In a first reaction zone the oxygenates are directly converted to gasoline and an isobutane by-product. In a second reaction zone oxygenates are dehydrated to an intermediate product comprising C.sub.3 -C.sub.4 olefins, which are then further reacted with the isobutane by-product in a third reaction zone to yield a gasoline alkylate. Ethylene-containing vapors may be separated from the second reaction zone and recycled to the first reaction zone for further processing.
摘要:
High viscosity lubricants are formed by oligomerizing olefins in two stages. The first stage converts a lower olefin feed to distillate range hydrocarbons in the presence of an aluminosilicate zeolite such as ZSM-5. The distillate effluent from the first stage is further polymerized to lubricant range hydrocarbons at elevated temperatures in the presence of a ditertiary alkylperoxide catalyst.
摘要:
Light olefins are co-processed with aromatic-containing jet fuel range distillate over a large pore zeolite to produce an olefinic distillate and a high molecular weight alkyl aromatic fraction higher boiling than the olefinic distillate. The alkyl aromatic fraction is of high cetane value and can be separated from the olefinic distillate and used as blending material for diesel fuel.
摘要:
Water soluble oxygenates of Fischer-Tropsch synthesis separated from water and acids are sequentially converted by a dehydration catalyst and a special zeolite catalyst to provide a product containing a major proportion of middle distillate.
摘要:
A process for converting oxygenated feedstock comprising methanol, dimethyl ether or the like to liquid hydrocarbons comprising the steps ofcontacting the feedstock with zeolite catalyst in a primary catalyst stage at elevated temperature and moderate pressure to convert feedstock to hydrocarbons comprising C.sub.2 -C.sub.4 olefins and C.sub.5.sup.+ hydrocarbons;cooling and separating effluent from the primary stage to recover a liquid hydrocarbon stream and a light hydrocarbon vapor stream rich in C.sub.2 -C.sub.4 olefins;compressing the olefinic light hydrocarbon stream to condense a liquid olefinic hydrocarbon stream rich in C.sub.3.sup.+ olefins and recovering an ethene-rich gaseous stream;further pressurizing and contacting the condensed liquid olefinic hydrocarbon stream in a secondary catalytic stage with oligomerization catalyst comprising medium-pore shape selective acidic zeolite at substantially increased pressure and moderate temperature to convert at least a portion of olefins to a heavier liquid hydrocarbon product stream comprising olefinic gasoline and distillate range liquids; andrecovering ethene in a gaseous stream for recycle to the primary catalytic stage.
摘要:
A combination process for producing high viscosity index lubes from light olefins is provided wherein light olefins are first passed over a small pore zeolite and the liquid product therefrom is then processed over an intermediate pore zeolite to provide a lubricating oil with a higher viscosity, high Viscosity Index and low pour point in greater yield than obtained with either of the catalysts alone.
摘要:
A catalytic process for converting an olefinic feedstock comprising lower olefin to heavier hydrocarbon product comprising the steps of:contacting the feedstock and a recycled hydrocarbon with shape-selective zeolite oligomerization catalyst in catalytic reaction zone at elevated temperature and pressure to provide a heavier hydrocarbon effluent stream comprising heavy, intermediate and light hydrocarbons;flashing the effluent stream between the reaction zone and a phase separation zone by reducing pressure of the effluent stream, thereby producing a heavy liquid stream rich in heavy hydrocarbons and a flashed effluent vapor stream containing lighter hydrocarbons;separating and recovering a recycle stream rich in intermediate range hydrocarbons from the separation zone and pressurizing the recycle stream for recycle to the reactor inlet;further fractionating the heavy liquid stream and flashed effluent vapor from the phase separation zone in first distillation tower to remove light hydrocarbons therefrom; andrecovering substantially all of the heavy hydrocarbons produced in the reaction zone in a fractionated liquid product stream.
摘要:
A multi-stage catalytic olefin upgrading technique for converting lower olefinic feedstock to heavier liquid hydrocarbon product. The invention provides a fluid bed continuous primary stage reaction zone with shape selective medium pore zeolite oligomerization catalyst particles to convert at least a portion of the lower olefinic components to intermediate olefinic hydrocarbons containing olefinic and aromatic components; cooling primary stage reaction effluent to condense at least a portion of the intermediate hydrocarbons; feeding a second olefinic stream to a serially arranged multi-reactor secondary stage for upgrading lower olefins; quenching partially upgraded secondary stage olefins with primary stage liquid; and further contacting the quenched mixture including aromatics from the primary stage with shape selective medium pore zeolite olgiomerization catalyst in a high pressure fix bed secondary stage distillate mode catalytic reactor at elevated temperature and high prssure to provide a heavier hydrocarbon effluent stream comprising distillate hydrocarbons.
摘要:
A technique for continuous conversion of diene-containing aliphatic hydrocarbon feedstock to heavier hydrocarbon products wherein the feedstock is contacted at elevated temperature under endothermic high severity reaction conditions with a fluidized bed of acidic zeolite fine catalyst particles, comprising methods and means for:maintaining the fluidized catalyst bed in a vertical reactor having a turbulent reaction zone by passing vapor upwardly through the reaction zone at a velocity greater than dense bed transition velocity to a turbulent regime and less than transport velocity for the average catalyst particle;feeding a continuous stream of feedstock into the reaction zone, said feedstream comprising sufficient C.sub.3.sup.+ alkanes to require net endothermic reaction conditions;withdrawing a portion of coked catalyst from the reaction zone, oxidatively regenerating the withdrawn catalyst, heating the catalyst substantially above process temperature in the fluidized bed reactor, and returning hot regenerated catalyst to the reaction zone at a rate to control catalyst activity and reaction temperature under conditions of reaction severity to effect feedstock conversion to an aromatics-rich hydrocarbon effluent stream; andseparating an aromatics-rich product from the fluidized bed effluent stream.Aromatics yield is increased by recovering a recycle stream comprising C.sub.5.sup.+ aliphatic hydrocarbons from the fluidized bed effluent stream for further conversion in the fluidized bed to increase aromatics product yield.