摘要:
A lithographic projection apparatus includes an optical assembly that projects an image onto a workpiece, and a containment member disposed adjacent to a lower end of the optical assembly. The containment member has an aperture through which an exposure beam passes from the optical assembly to the workpiece. The lithographic projection apparatus also includes a stage assembly including a workpiece table that supports the workpiece adjacent to the containment member. A space between the containment member and the workpiece is filled with an immersion liquid. The lithographic projection apparatus further includes a liquid collection system that has a recess in the workpiece table that receives immersion liquid that overflows the space between the containment member and the workpiece. At least part of the recess is disposed radially outward of the workpiece. The recess is partially filled with a porous material.
摘要:
A lithography apparatus having a fluid confinement plate, which completely submerges the imaging surface of a substrate, is disclosed. The apparatus includes an imaging element defining an image and a stage configured to support the substrate. A projection optical system is provided to project the image defined by the imaging element onto the imaging surface of the substrate. A gap, filled with immersion fluid, is provided between the imaging surface of the substrate and the last optical element of the projection optical system. The fluid confinement plate, which is positioned within the gap between the last optical element and the substrate, is sufficiently sized so that the imaging surface is completely submerged in the immersion fluid. The fluid confinement plate includes a first surface facing the gap and opposing the imaging surface of the substrate. The first surface includes a droplet control element to control the formation of droplets forming on the first surface. In one embodiment, the droplet control element is a porous surface formed on the first surface. A vacuum is used to pull any excess immersion fluid through the porous region to prevent the formation of droplets. In a second embodiment, the droplet control element is a sloped surface that causes any immersion fluid on the first surface to flow toward to main body of immersion fluid in the gap.
摘要:
An apparatus and method provide fluid for immersion lithography. A nozzle member that can move in a direction, is arranged to encircle a space under the optical element. The nozzle member can have an input to supply the immersion liquid to the space under the optical element during the exposure, and an output to remove the immersion liquid from a gap between the nozzle member and the wafer during the exposure. Immersion liquid can be supplied at a first rate to the space from a first portion of the nozzle member and at a second rate to the space from a second portion during the exposure. A wafer substrate is exposed by light through the immersion liquid.
摘要:
A measurement system (222) for measuring the position of a stage (248) along a first axis includes a first system (260) having a first beam source (260A) that directs a first beam (260H) on a first path that is parallel with a second axis and a first redirector (260D) that redirects the first beam so that the redirected first beam (260H) is on a first redirected path that is parallel with the first axis irrespective to the orientation of the first redirector (260D) about a third axis. The measurement system (222) can include a shield (380) that protects the first beam (260H) from environmental conditions.
摘要:
Apparatus and methods recover a fluid from an immersion area formed in a gap between a projection system and an object of exposure in an immersion lithography system. Liquid is supplied through a supply inlet. A porous member is disposed adjacent to a space. The porous member includes a first portion and a second portion. A recovery capability to remove the supplied liquid from the space through the first portion is different from a recovery capability to remove the supplied liquid from the space through the second portion.
摘要:
A mover combination (226) for moving and positioning a device (34) includes a mover (328) that defines a fluid passageway (370) and a circulation system (330) having a passageway inlet (374) and a passageway outlet (376). The circulation system (330) directs a circulation fluid (378) into the fluid passageway (370). The circulation system (330) can include a liquid/gas separator (384) that is in fluid communication with the fluid passageway (370). With this design, the plumbing for the liquid (378A) and the gas (378B) can each be optimized. Additionally, the circulation system (330) can include a pressure control device (388) that controls the pressure of the circulation fluid (378) in at least a portion of the fluid passageway (370). With this design, the pressure control device (388) controls the pressure of the circulation fluid (378) near the fluid passageway (370) so that the temperature of the circulation fluid (378) at the passageway outlet (376) is approximately equal to the temperature of the circulation fluid (378) at the passageway inlet (374). Moreover, the circulation system (930) can include a pump assembly (980) that directs the circulation fluid (978) into the passageway inlet (974), and a pressure control device (996) that precisely controls a state of the circulation fluid (978) near the passageway inlet (974). With this design, the phase of the circulation fluid (978) at the passageway inlet (974) can be precisely controlled without restricting the flow of the circulation fluid (978).
摘要:
An apparatus and method provide fluid for immersion lithography. A nozzle member that can move in a direction, is arranged to encircle a space under the optical element. The nozzle member can have an input to supply the immersion liquid to the space under the optical element during the exposure, and an output to remove the immersion liquid from a gap between the nozzle member and the wafer during the exposure. Immersion liquid can be supplied at a first rate to the space from a first portion of the nozzle member and at a second rate to the space from a second portion during the exposure. A wafer substrate is exposed by light through the immersion liquid.
摘要:
A apparatus and methods recover a fluid from an immersion area formed in a gap between a projection system and an object of exposure in an immersion lithography system. A porous member is disposed adjacent to the immersion area. A pressure control system provides a first low pressure to a first portion of the porous member to remove immersion fluid that escapes from the immersion area, and provides a second low pressure to a second portion of the porous member to remove immersion fluid that escapes from the immersion area. The second low pressure is different from the first low pressure.
摘要:
Methods and apparatus for providing a stage apparatus which is modular and allows for reaction force cancellation are described. According to one aspect of the present invention, a stage apparatus includes a table assembly and a first stage. The table assembly supports an object, e.g., a wafer or a reticle, which is to be moved. The first stage includes a counter mass arrangement, a plurality of carriages, and a plurality of linkages. The plurality of carriages is coupled to the table assembly through the plurality of linkages such that a first carriage and a second carriage are arranged to move in substantially opposite directions along a first axis to cause the table assembly to move along a second axis while reaction forces generated when the first carriage and the second carriage are substantially cancelled by the counter mass arrangement.
摘要:
Immersion fluid remaining on a portion of a substrate after that portion has passed an immersion nozzle is removed by moving the substrate relative to an immersion nozzle so that the portion of the substrate on which the immersion fluid remains is passed by the immersion nozzle again. A path is determined along which the substrate is to be moved to remove the remaining immersion fluid. The path can be determined based upon previous movements of the substrate, including factors such as the speed and/or length of the previous movements. Alternatively, portions of the substrate on which immersion fluid remains can be detected, and then the substrate can be moved so that the portion of the substrate on which the immersion fluid remains is passed by the immersion nozzle based on the results of the detection. Immersion fluid also can be removed from the stage surface located beyond the substrate.