摘要:
Therapy optimization includes tracking electrode motion using an electroanatomic mapping system and generating, based on tracked electrode motion, one or more mechanical dyssynchrony metrics to thereby guide a clinician in therapy optimization (e.g., via optimal electrode sites, optimal therapy parameters, etc.). Such a method may include a vector analysis of electrode motion with respect to factors such as times in cardiac cycle, phases of a cardiac cycle, and therapy conditions, e.g., pacing sites, pacing parameters and pacing or no pacing. Differences in position-with-respect-to-time data for electrodes may also be used to provide measurements of mechanical dyssynchrony.
摘要:
An exemplary method includes providing a mechanical activation time (MA time) for a myocardial location, the location defined at least in part by an electrode and the mechanical activation time determined at least in part by movement of the electrode; providing an electrical activation time (EA time) for the myocardial location; and determining an electromechanical delay (EMD) for the myocardial location based on the difference between the mechanical activation time (MA time) and the electrical activation time (EA time).
摘要:
A system and method for treating an arrhythmia in a heart are provided. The system includes an electronic control unit configured to monitor movement of one or more position sensor over a period of time. The position sensors may, for example, comprise electrodes or coils configured to generate induced voltages and currents in the presence of electromagnetic fields. The positions sensors are in contact with portions of heart tissue and changes in position are representative of motion of that tissue. The electronic control unit is further configured to generate an indicator, responsive to the movements of the sensors over the period of time, of a characteristic of the heart affected by delivery of ablation energy to heart tissue. In this manner, the effectiveness and safety of cardiac tissue ablation for treatment of the arrhythmia can be assessed and a post-ablation therapy regimen determined.
摘要:
A system and method for treating an arrhythmia in a heart are provided. The system includes an electronic control unit configured to monitor movement of one or more position sensor over a period of time. The position sensors may, for example, comprise electrodes or coils configured to generate induced voltages and currents in the presence of electromagnetic fields. The positions sensors are in contact with portions of heart tissue and changes in position are representative of motion of that tissue. The electronic control unit is further configured to generate an indicator, responsive to the movements of the sensors over the period of time, of a characteristic of the heart affected by delivery of ablation energy to heart tissue. In this manner, the effectiveness and safety of cardiac tissue ablation for treatment of the arrhythmia can be assessed and a post-ablation therapy regimen determined.
摘要:
An exemplary method includes providing at least two-dimensional position information, for at least two points in time, for an electrode located in a cardiac space; determining a local estimator based on the position information; and, based at least in part on the determined local estimator, selecting a configuration for delivering a cardiac pacing therapy or diagnosing a cardiac condition. Exemplary methods for regional estimators and exemplary methods for global estimators are also disclosed along with devices and systems configured to perform various methods.
摘要:
An exemplary method includes providing a mechanical activation time (MA time) for a myocardial location, the location defined at least in part by an electrode and the mechanical activation time determined at least in part by movement of the electrode; providing an electrical activation time (EA time) for the myocardial location; and determining an electromechanical delay (EMD) for the myocardial location based on the difference between the mechanical activation time (MA time) and the electrical activation time (EA time).
摘要:
An exemplary method includes providing at least two-dimensional position information, for at least two points in time, for an electrode located in a cardiac space; determining a local estimator based on the position information; and, based at least in part on the determined local estimator, selecting a configuration for delivering a cardiac pacing therapy or diagnosing a cardiac condition. Exemplary methods for regional estimators and exemplary methods for global estimators are also disclosed along with devices and systems configured to perform various methods.
摘要:
An exemplary method includes selecting multiple electrodes located in a patient; acquiring position information during one or more cardiac cycles for the multiple electrodes where the acquiring includes using each of the electrodes for measuring one or more electrical potentials in an electrical localization field established in the patient; calculating one or more vector metrics based on the acquired position information for one or more vectors, each vector defined by two of the multiple electrodes; and analyzing the one or more vector metrics to assess cardiac performance during the one or more cardiac cycles. Various other methods, devices, systems, etc., are also disclosed.
摘要:
An exemplary method includes selecting multiple electrodes located in a patient; acquiring position information during one or more cardiac cycles for the multiple electrodes where the acquiring includes using each of the electrodes for measuring one or more electrical potentials in an electrical localization field established in the patient; calculating one or more vector metrics based on the acquired position information for one or more vectors, each vector defined by two of the multiple electrodes; and analyzing the one or more vector metrics to assess cardiac performance during the one or more cardiac cycles. Various other methods, devices, systems, etc., are also disclosed.
摘要:
A system and method are provided for monitoring ischemic development. The system and method identify a non-physiologic event and obtain cardiac signals along multiple sensing vectors, wherein at least a portion of the sensing vectors extend to or from electrodes located proximate to the left ventricle. The system and method monitor a segment of interest in the cardiac signals obtained along the multiple sensing vectors to identify deviations in the segment of interest from a baseline. The system and method record at least one of timing or segment shift information associated with the deviations in the segments of interest; and identify at least one of size, direction of development or rate of progression of an ischemia region based on the at least one of timing or segment shift information.