Abstract:
A microfluidic device adapted to perform many simultaneous binding assays including but not limited to immunological experiments, such as ELISA assays, with minimal cross-talk between primary and secondary antibodies.
Abstract:
An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.
Abstract:
A method of controlling an internal combustion engine when the engine is operating in an engine braking mode is provided. The engine operates in the engine braking mode and an exhaust valve for the cylinder is prematurely opened to dissipate power. The method includes controlling airflow to at least one cylinder based on a comparison of a desired mass airflow rate and an actual mass airflow rate such that the actual mass airflow rate tracks the desired mass airflow rate.
Abstract:
A method of controlling an internal combustion engine includes determining an exhaust gas recirculation (EGR) command signal based on at least one engine condition, and determining a variable geometry turbocharger (VGT) command signal based on at least one engine condition and at least partially based on the EGR command signal. Advantageously, the EGR system and VGT system may be continuously and simultaneously controlled, taking into account the effects of each system on the other, to provide improved and more precise control over engine air flow. In an alternative embodiment, an engine may be controlled with a feedback control system where engine intake chemical composition is the feedback variable.
Abstract:
New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
Abstract:
In controlling an engine, an amount of an intake charge provided, during operation of the engine, to a combustion chamber of the engine is determined. The intake charge includes an air component, a fuel component and a diluent component. An amount of the air component of the intake charge is determined. An amount of the diluent component of the intake charge is determined utilizing the amount of the intake charge, the amount of the air component and, in some instances, the amount of the fuel component. An amount of a diluent supplied to the intake charge is adjusted based at least in part on the determined amount of diluent component of the intake charge.
Abstract:
In certain embodiments, the present invention provides amplification methods in which nucleotide tag(s) and, optionally, a barcode nucleotide sequence are added to target nucleotide sequences. In other embodiments, the present invention provides a microfluidic device that includes a plurality of first input lines and a plurality of second input lines. The microfluidic device also includes a plurality of sets of first chambers and a plurality of sets of second chambers. Each set of first chambers is in fluid communication with one of the plurality of first input lines. Each set of second chambers is in fluid communication with one of the plurality of second input lines. The microfluidic device further includes a plurality of first pump elements in fluid communication with a first portion of the plurality of second input lines and a plurality of second pump elements in fluid communication with a second portion of the plurality of second input lines.
Abstract:
The present invention provides methods of and systems for translating conditions from a small-volume experiment to a larger-volume experiment.
Abstract:
A pulsed eddy current pipeline inspection device is provided. The pulsed eddy current pipeline inspection device comprises a plurality of stages longitudinally spaced apart from each other and adapted to move between a contracted position and an expanded position, and a plurality of sensors disposed around at least a portion of a circumference of each of the plurality of stages in the contracted position with at least one gap between sensors in each of the plurality of stages in the expanded position, the plurality of sensors being arranged such that the at least one gap in a first one of the plurality of stages is aligned with a portion of a second one of the plurality of stages that has sensors disposed thereon.
Abstract:
A pulsed eddy current pipeline inspection device is provided. The pulsed eddy current pipeline inspection device comprises a plurality of stages longitudinally spaced apart from each other and adapted to move between a contracted position and an expanded position, and a plurality of sensors disposed around at least a portion of a circumference of each of the plurality of stages in the contracted position with at least one gap between sensors in each of the plurality of stages in the expanded position, the plurality of sensors being arranged such that the at least one gap in a first one of the plurality of stages is aligned with a portion of a second one of the plurality of stages that has sensors disposed thereon.