Abstract:
Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
Abstract:
Some embodiments provide a method of operating a device to capture an image of a high dynamic range (HDR) scene. Upon the device entering an HDR mode, the method captures and stores multiple images at a first image exposure level. Upon receiving a command to capture the HDR scene, the method captures a first image at a second image exposure level. The method selects a second image from the captured plurality of images. The method composites the first and second images to produce a composite image that captures the HDR scene. In some embodiments, the method captures multiple images at multiple different exposure levels.
Abstract:
Systems and methods are provided for selectively performing image statistics processing based at least partly on whether a pixel has been clipped. In one example, an image signal processor may include statistics collection logic. The statistics collection logic may include statistics image processing logic and a statistics core. The statistics image processing logic may perform initial image processing on image pixels, at least occasionally causing some of the image pixels to become clipped. The statistics core may obtain image statistics from the image pixels. The statistics core may obtain at least one of the image statistics using only pixels that have not been clipped and excluding pixels that have been clipped.
Abstract:
A knight's order processing method for block processing pipelines in which the next block input to the pipeline is taken from the row below and one or more columns to the left in the frame. The knight's order method may provide spacing between adjacent blocks in the pipeline to facilitate feedback of data from a downstream stage to an upstream stage. The rows of blocks in the input frame may be divided into sets of rows that constrain the knight's order method to maintain locality of neighbor block data. Invalid blocks may be input to the pipeline at the left of the first set of rows and at the right of the last set of rows, and the sets of rows may be treated as if they are horizontally arranged rather than vertically arranged, to maintain continuity of the knight's order algorithm.
Abstract:
Systems and methods for down-scaling are provided. In one example, a method for processing image data includes determining a plurality of output pixel locations using a position value stored by a position register, using the current position value to select a center input pixel from the image data and selecting an index value, selecting a set of input pixels adjacent to the center input pixel, selecting a set of filtering coefficients from a filter coefficient lookup table using the index value, filtering the set of source input pixels to apply a respective one of the set of filtering coefficients to each of the set of source input pixels to determine an output value for the current output pixel at the current position value, and correcting chromatic aberrations in the set of source input pixels.
Abstract:
In an embodiment, a system includes a display processing unit configured to process a video sequence for a target display. In some embodiments, the display processing unit is configured to composite the frames from frames of the video sequence and one or more other image sources. The display processing unit may be configured to write the processed/composited frames to memory, and may also be configured to generate statistics over the frame data, where the generated statistics are usable to encode the frame in a video encoder. The display processing unit may be configured to write the generated statistics to memory, and the video encoder may be configured to read the statistics and the frames. The video encoder may be configured to encode the frame responsive to the statistics.
Abstract:
Methods and apparatus for configuring multiple components of a subsystem are described. The configuration memory of each of a plurality of components coupled to an interconnect includes a global configuration portion. The configuration memory of one of the components may be designated as a master global configuration for all of the components. A module coupled to the interconnect may receive writes to the components from a configuration source. For each write, the module may decode the write to determine addressing information and check to see if the write is addressed to the master global configuration. If the write is addressed to the master global configuration, the module broadcasts the write to the global configuration portion of each of the components via the interconnect. If the write is not addressed to the master global configuration, the module forwards the write to the appropriate component via the interconnect.
Abstract:
Systems and methods for down-scaling are provided. In one example, a method for processing image data includes determining a plurality of output pixel locations using a position value stored by a position register, using the current position value to select a center input pixel from the image data and selecting an index value, selecting a set of input pixels adjacent to the center input pixel, selecting a set of filtering coefficients from a filter coefficient lookup table using the index value, filtering the set of source input pixels to apply a respective one of the set of filtering coefficients to each of the set of source input pixels to determine an output value for the current output pixel at the current position value, and correcting chromatic aberrations in the set of source input pixels.
Abstract:
A device may include an electronic display to display an image frame based on blended image data and image processing circuitry to generate the blended image data by combining first image data and second image data via a blend operation. The blend operation may include receiving graphics alpha data indicative of a transparency factor to be applied to the first image data to generate a first layer of the blend operation. The blend operation may also include overlaying the first layer onto a second layer that is based on the second image data. Overlaying the first layer onto the second layer may include adding first pixels values of the first image data that include negative pixel values and are augmented by the transparency factor to second pixel values of the second image data to generate blended pixel values of the blended image data.
Abstract:
A method of signaling additional chroma QP offset values that are specific to quantization groups is provided, in which each quantization group explicitly specifies its own set of chroma QP offset values. Alternatively, a table of possible sets of chroma QP offset values is specified in the header area of the picture, and each quantization group uses an index to select an entry from the table for determining its own set of chroma QP offset values. The quantization group specific chroma QP offset values are then used to determine the chroma QP values for blocks within the quantization group in addition to chroma QP offset values already specified for higher levels of the video coding hierarchy.