Electronic Device With Configurable Symmetric Antennas
    23.
    发明申请
    Electronic Device With Configurable Symmetric Antennas 有权
    具有可配置对称天线的电子设备

    公开(公告)号:US20160322699A1

    公开(公告)日:2016-11-03

    申请号:US14701323

    申请日:2015-04-30

    Applicant: Apple Inc.

    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing that are separated from a round by an elongated opening. The electronic device may have a central longitudinal axis that divides the antenna resonating element arm and other antenna structures into symmetrical halves that exhibit mirror symmetry with respect to the central longitudinal axis. The antenna structures may include symmetrical slot antenna resonating elements on opposing sides of the central longitudinal axis. Electrical components such as switches and antenna tuning inductors may be coupled to the antenna structures in a configuration that is symmetrical with respect to the central longitudinal axis. The electrical components may be used to place the antenna structures in an unflipped configuration or in a symmetrical flipped configuration.

    Abstract translation: 电子设备可以具有带天线的无线电路。 用于天线的天线谐振元件臂可以由沿着器件外壳的边缘延伸的周边导电结构形成,该外围导电结构通过细长的开口与圆分离。 电子设备可以具有中心纵向轴线,其将天线谐振元件臂和其它天线结构分成相对于中心纵向轴线呈现镜像对称性的对称半部。 天线结构可以包括在中心纵向轴线的相对侧上的对称缝隙天线谐振元件。 诸如开关和天线调谐电感器的电气部件可以以相对于中心纵向轴线对称的配置耦合到天线结构。 电气部件可以用于将天线结构放置在未开启的配置或对称的翻转配置中。

    Methods and Apparatus for Performing Coexistence Testing for Multi-Antenna Electronic Devices
    24.
    发明申请
    Methods and Apparatus for Performing Coexistence Testing for Multi-Antenna Electronic Devices 有权
    用于多天线电子设备共存测试的方法和装置

    公开(公告)号:US20140087668A1

    公开(公告)日:2014-03-27

    申请号:US13629414

    申请日:2012-09-27

    Applicant: APPLE INC

    CPC classification number: H04W24/08 H04B17/318 H04B17/345 H04W24/06

    Abstract: Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.

    Abstract translation: 提供了用于在各种无线电共存场景中表征天线性能的射频测试系统。 在一种合适的布置中,可以使用测试系统来执行被动无线电共存表征。 在被动无线电共存表征期间,可以使用至少一个信号发生器将攻击者信号直接馈送到被测电子设备(DUT)内的天线。 攻击者信号可能在受害频段中产生不期望的干扰信号,然后使用频谱分析仪接收和分析。 在有源无线电共存表征期间,可以使用至少一个无线电通信仿真器来经由第一测试天线与DUT进行通信。 当DUT正在与至少一个无线电通信仿真器进行通信时,也可以在DUT 10和第二测试天线之间传送测试信号。 通过第二测试天线传送的测试信号可用于获得信号干扰电平测量。

    Electronic device with millimeter wave antennas on printed circuits

    公开(公告)号:US11588223B2

    公开(公告)日:2023-02-21

    申请号:US16572370

    申请日:2019-09-16

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.

    Electronic device with millimeter wave antenna arrays

    公开(公告)号:US10998616B2

    公开(公告)日:2021-05-04

    申请号:US16272932

    申请日:2019-02-11

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.

    Electronic device with millimeter wave antenna arrays

    公开(公告)号:US10205224B2

    公开(公告)日:2019-02-12

    申请号:US15275183

    申请日:2016-09-23

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include millimeter wave antenna arrays formed from arrays of patch antennas, dipole antennas or other millimeter wave antennas on millimeter wave antenna array substrates. Circuitry such as upconverter and downconverter circuitry may be mounted on the substrates. The upconverter and downconverter may be coupled to wireless communications circuitry such as a baseband processor circuit using an intermediate frequency signal path. The electronic device may have opposing front and rear faces. A display may cover the front face. A rear housing wall may cover the rear face. A metal midplate may be interposed between the display and rear housing wall. Millimeter wave antenna arrays may transmit and receive antenna signals through the rear housing wall.

    Electronic Device With Speaker Port Aligned Antennas

    公开(公告)号:US20190027808A1

    公开(公告)日:2019-01-24

    申请号:US15655015

    申请日:2017-07-20

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry, a conductive housing, and a display. The display may have an active area that displays image data and an inactive area that does not display image data. The active area may completely surround the inactive area at a front face of the device. A speaker port may be aligned with the inactive area and may emit sound through the inactive area. The wireless circuitry may include first and second antenna arrays. The first array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through the inactive area of the display. The second array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through a slot in a rear wall of the conductive housing. Control circuitry may perform beam steering using the first and second arrays.

    Electronic devices with indirectly-fed adjustable slot elements

    公开(公告)号:US10158384B1

    公开(公告)日:2018-12-18

    申请号:US15699869

    申请日:2017-09-08

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. An antenna in the electronic device may have an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna may also include an indirectly-fed antenna resonating element that is indirectly fed by a harmonic mode of the inverted-F antenna resonating element via near field electromagnetic coupling. The indirectly-fed antenna resonating element may be a slot. The antenna ground may define at least three edges of the slot and the slot may be aligned with a dielectric-filled gap in the peripheral conductive housing structures. An adjustable circuit may be coupled across the slot to tune the indirectly-fed antenna resonating element.

Patent Agency Ranking