Abstract:
To facilitate conducting a secure transaction via wireless communication between a portable electronic device (such as a smartphone) and another electronic device (such as a point-of-sale terminal), the portable electronic device may, after a final command is received from the other electronic device, determine a unique transaction identifier for the secure transaction. In particular, the final command may be specific to an applet, stored in a secure element in the portable electronic device, which conducts the secure transaction. The secure element may generate the unique transaction identifier based on financial-account information associated with the applet, which is communicated to the other electronic device. Next, the secure element may provide, to a processor in the portable electronic device, an end message for the secure transaction with the unique transaction identifier.
Abstract:
To facilitate conducting a secure transaction via wireless communication between a portable electronic device (such as a smartphone) and another electronic device (such as a point-of-sale terminal), the portable electronic device may, after a final command is received from the other electronic device, determine a unique transaction identifier for the secure transaction. In particular, the final command may be specific to an applet, stored in a secure element in the portable electronic device, which conducts the secure transaction. The secure element may generate the unique transaction identifier based on financial-account information associated with the applet, which is communicated to the other electronic device. Next, the secure element may provide, to a processor in the portable electronic device, an end message for the secure transaction with the unique transaction identifier.
Abstract:
To facilitate conducting a financial transaction via wireless communication between a portable electronic device (such as a smartphone) and another electronic device (such as a point-of-sale terminal), the portable electronic device may, after a final command is received from the other electronic device, determine a unique transaction identifier for the financial transaction. In particular, the final command may be specific to a payment applet, stored in a secure element in the portable electronic device, which conducts the financial transaction. The secure element may generate the unique transaction identifier based on financial-account information associated with the payment applet, which is communicated to the other electronic device. Moreover, the financial-account information may specify a financial account that is used to pay for the financial transaction. Next, the secure element may provide, to a processor in the portable electronic device, an end message for the financial transaction with the unique transaction identifier.
Abstract:
A system for provisioning credentials onto an electronic device is provided. The system may include a payment network subsystem, a service provider subsystem, a primary user device, and a secondary user device. The user may select a particular payment card to provision onto the secondary user device by providing an input at the primary user device. A broker module running on the service provider subsystem may then transfer a disabled pass to the secondary user device. Concurrently, the payment network subsystem may direct a trusted service manager module on the service provider subsystem to write credential information onto a secure element within the secondary user device. Once the secure element has been updated, the broker module may provide an activated pass to the secondary user device so that the secondary user device can be used to perform NFC-based financial transactions at a merchant terminal.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible white also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for transmitting, as part of a polling loop, a value added services (VAS) command that includes capability data corresponding to a payment terminal. For example, the payment terminal can transmit a VAS command that advertises the payment terminal's capabilities as part of a polling loop. The payment terminal can listen for a response to the VAS command and, after receiving a response, the payment terminal may initiate a VAS protocol. The VAS command can also specify a mode in which the payment terminal is operating, such as a payment-only mode, a VAS mode, a payment-plus-VAS mode, etc.
Abstract:
A system for provisioning credentials onto an electronic device is provided. The system may include a payment network subsystem, a service provider subsystem, a primary user device, and a secondary user device. The user may select a particular payment card to provision onto the secondary user device by providing an input at the primary user device. A broker module running on the service provider subsystem may then transfer a disabled pass to the secondary user device. Concurrently, the payment network subsystem may direct a trusted service manager module on the service provider subsystem to write credential information onto a secure element within the secondary user device. Once the secure element has been updated, the broker module may provide an activated pass to the secondary user device so that the secondary user device can be used to perform NFC-based financial transactions at a merchant terminal.
Abstract:
In certain embodiments, an electronic device can include a secure element that detects a mechanical input. The mechanical input can correspond to an instruction to transmit securely stored payment information to another device and/or to release such information to an application on the device (e.g., for use in an in-app commerce transaction). This feature can inhibit or prevent unauthorized transmission of payment information. When the mechanical input is detected, payment information can be transmitted to a point of sale (POS) terminal (e.g., via near-field communication) or released to an app on the device. Further, a user can either use default payment information or interact with the device (before or after providing the mechanical input) to select appropriate payment information for a transaction. For example, the user can select between credit cards, debit cards and/or stored-value cards (e.g., transit card).
Abstract:
To facilitate conducting a secure transaction via wireless communication between a portable electronic device (such as a smartphone) and another electronic device (such as a point-of-sale terminal), the portable electronic device may, after a final command is received from the other electronic device, determine a unique transaction identifier for the secure transaction. In particular, the final command may be specific to an applet, stored in a secure element in the portable electronic device, which conducts the secure transaction. The secure element may generate the unique transaction identifier based on financial-account information associated with the applet, which is communicated to the other electronic device. Next, the secure element may provide, to a processor in the portable electronic device, an end message for the secure transaction with the unique transaction identifier.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible while also limiting the power consumption of the NFC component and of other components of the electronic device.