Abstract:
An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens. The refractive lens is preferably formed using grey-scale lithography and dry etching the first layer.
Abstract:
A microelectromechanical systems (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) in which the MEMS mirror is a bonded to the active region. This allows for a separate electrostatic cavity, that is outside the laser's optical resonant cavity. Moreover, the use of this cavity configuration allows the MEMS mirror to be tuned by pulling the mirror away from the active region. This reduces the risk of snap down. Moreover, since the MEMS mirror is now bonded to the active region, much wider latitude is available in the technologies that are used to fabricate the MEMS mirror. This is preferably deployed as a swept source in an optical coherence tomography (OCT) system.
Abstract:
An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal to form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm.
Abstract:
An integrated swept wavelength optical source uses a filtered ASE signal with an optical amplifier and tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a first tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal, and a second tunable Fabry Perot filter, installed on the bench, for spectrally filtering the amplified tunable signal from the amplifier. A self-tracking arrangement is also possible where a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system. For example, polarization control between components is no longer necessary.