摘要:
A method and device for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, is provided. In various embodiments, the laser device includes plural laser emitters emitting green or blue laser light, integrated a substrate.
摘要:
A laser source (340) comprises a first frame (356), a laser (358), and a first mounting assembly (360). The laser (358) generates an output beam (354) that is directed along a beam axis (354A). The first mounting assembly (360) allows the laser (358) to expand and contract relative to the first frame (356) along a first axis and along a second axis that is orthogonal to the beam axis, while maintaining alignment of the output beam (354) so the beam axis (354A) is substantially coaxial with the first axis. The first mounting assembly (360) can include a first fastener assembly (366) that couples the laser (358) to the first frame (356), and a first alignment assembly (368) that maintains alignment of the laser (358) along a first alignment axis (370) that is substantially parallel to the first axis.
摘要:
Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PLF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.
摘要:
Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PIF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.
摘要:
The invention provides a high-reliability nitride semiconductor laser that reduces the stress of a nitride dielectric film formed on a resonator's end face, thus reducing possible damage to the resonator's end face, which may occur during the formation of the nitride dielectric film. A method of manufacturing a nitride semiconductor laser according to the invention uses a nitride-based III-V compound semiconductor and includes the steps of (a) forming an adherence layer of a nitride dielectric on both a light-emitting and a light-reflecting end face of a resonator in plasma containing a nitrogen gas; and (b) forming a low-reflective and a high-reflective face-coating film of a dielectric on the adherence layers.
摘要:
A semiconductor device includes an optical semiconductor element, a package including a base made of a metal for mounting the optical semiconductor element, and a cap for encapsulating the optical semiconductor element and a gas by covering the package and the optical semiconductor element. The gas encapsulated with the package has an oxygen concentration not less than 15% and less than 30% and has a dew-point not less than −15° C. and not more than −5° C.
摘要:
A CAN package light emitting device comprises a semiconductor laser 1 bonded on a sub mount 6 and a CAN package 2 for housing the semiconductor laser 1 bonded on the sub mount 6. The CAN package 2 comprises a fixing structure 3 for fixing the semiconductor laser at a predetermined position, and a cap 4 covering the semiconductor laser 1 fixed to the fixing structure 3. Vapor pressure of Si organic compound gas in the CAN package 2 is limited to or below 5.4×102 N/m2 to prevent any deposit as thick as inviting characteristics deterioration from being formed on the light emitting portion of the semiconductor laser 1 within the guaranteed time of its proper operation.
摘要翻译:CAN封装发光器件包括接合在副安装座6上的半导体激光器1和用于容纳接合在副安装座6上的半导体激光器1的CAN封装2。 CAN封装2包括用于将半导体激光器固定在预定位置的固定结构3和覆盖固定到固定结构3的半导体激光器1的盖4。 CAN封装2中的Si有机化合物气体的蒸汽压力被限制在或低于5.4×10 2 N / m 2以下,以防止任何沉积物像引入特性劣化一样厚 在其正常操作的保证时间内形成在半导体激光器1的发光部分上。
摘要:
A package for a high power semiconductor laser comprising a hermetically sealed container filled with a dry gaseous medium containing oxygen. The presence of oxygen in the laser atmosphere is counter to standard practice in the art which teaches the use of an atmosphere of a dry inert gas. The package also includes a getter for organic impurities, e.g., a getter composed of a porous silica or a zeolite. The hydrogen content of the materials used to form the package are reduced by baking at an elevated temperature for an extended period of time, e.g., at 150.degree. C. for 200 hours.
摘要:
A method and device for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, is provided. In various embodiments, the laser device includes plural laser emitters emitting green or blue laser light, integrated a substrate.
摘要:
A microelectromechanical systems (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) in which the MEMS mirror is bonded to the active region. This allows for a separate electrostatic cavity that is outside the laser's optical resonant cavity. Moreover, the use of this cavity configuration allows the MEMS mirror to be tuned by pulling the mirror away from the active region. This reduces the risk of snap down. Moreover, since the MEMS mirror is now bonded to the active region, much wider latitude is available in the technologies that are used to fabricate the MEMS mirror. This is preferably deployed as a swept source in an optical coherence tomography (OCT) system.