Abstract:
A pixel array, a display driving device and a driving method thereof, and a display device are provided. The pixel array includes multiple columns of sub-pixel groups, each column of sub-pixel groups includes M×N sub-pixels arranged along a column direction, wherein the sub-pixel groups in odd numbered columns and the sub-pixel groups in even numbered columns offset in the column direction by ½ of a width of each sub-pixel in the column direction; each sub-pixel in each column of sub-pixel groups distorts in the column direction, and a distortion direction of the sub-pixel groups in the odd numbered columns is opposite to that of the sub-pixel groups in the even numbered columns. The crosstalk between the two views during 3D image displaying is improved by distortion of sub-pixels. A rendering method of the sub-pixels and 3D display are combined through the algorithm design, and the virtual resolution for each view is increased by algorithm compilation of 3D input signals, so as to make the display effect of 3D better.
Abstract:
An image display method, device and electronic apparatus avoid to some extent a problem of a poor display effect due to adjusting an image purely depending on an RGB image conversion algorithm. The solution comprises obtaining a brightness value of current ambient light; performing image conversion on a frame of image having three primary color components to obtain a first display information, the first display information comprising four primary color gray scale values of each pixel in the image; adjusting the first display information to a second display information according to the brightness value, the second display information comprising four primary color gray scale values of each adjusted pixel; and displaying the image according to the second display information.
Abstract:
The invention provides a display method and a display device. The display method comprises: generating a primary image based on image information, wherein the primary image is formed of virtual pixels arranged in a matrix, each virtual pixel is formed by multiple virtual sub-pixels of different colors arranged in one row, in the column direction, the size of the virtual pixel and that of the sub-pixel are the same; calculating a comparison component of each sub-pixel by using primary components of comparison virtual sub-pixels of the sub-pixel; acquiring differences between comparison components of each sub-pixel and other sub-pixels adjacent thereto, if each of the differences between comparison components of the sub-pixel and the other sub-pixels exceeds a predetermined threshold value, determining the sub-pixel as a highlighted sub-pixel; calculating a display component of each sub-pixel by using primary components of sampling virtual sub-pixels of the sub-pixel.
Abstract:
Disclosed are a method and a device for discriminating a boundary of image, and a display panel, for effectively discriminating whether an image has a boundary and in which direction the boundary is. The method for discriminating the boundary of image comprises: receiving an image information to be discriminated to form a matrix of grayscale parameter values, and dividing, with a grayscale parameter value corresponding to a sub-image unit to be processed as a center, the matrix of grayscale parameter values into a n×n matrix and a (n+2)×(n+2) matrix (S101); determining respectively in the n×n matrix and the (n+2)×(n+2) matrix: a minimum gradient and a minimum standard deviation in a row direction, in a column direction, in a first diagonal direction, and in a second diagonal direction, dispersion with respect to the minimum standard deviation and dispersion with respect to the minimum gradient (S102; S103); outputting a first code value when the determined dispersion is greater than N multiples of a minimum corresponding thereto, outputting a second code value when the determined dispersion is smaller than the N multiples of the minimum corresponding thereto (S104); determining, based on an outputted code value, whether the image to be discriminated has a boundary and in which direction the boundary is (S105).
Abstract:
A display panel for 3D display is disclosed. It includes a plurality of pixel units arranged in rows and columns, each of the plurality of pixel units including a plurality of sub pixels. The pixel units in adjacent columns are used as left-eye pixel units and right-eye pixel units, respectively, and intermediate sub pixels are provided between the sub pixels of the pixel units in the adjacent columns, and brightness values output by the intermediate sub pixels are equal to zero. A display device and a pixel driving method are also disclosed. The display panel, the display device and the pixel driving method can reduce a crosstalk caused by the light leakage of the grating, thereby improving a display performance of the display device.
Abstract:
Embodiments of the invention provide a liquid crystal panel, a display device, and a process for manufacturing the liquid crystal panel. The liquid crystal panel includes cell-assembled array substrate and colored substrate, and a liquid crystal layer between the array substrate and the colored substrate, wherein the liquid crystal layer includes a dual frequency liquid crystal and a polymer network anchoring the dual frequency liquid crystal, wherein the polymer network is formed by polymerization of liquid crystalline ultraviolet polymerizable monomers.
Abstract:
A liquid crystal display panel, in which pixel units are provided on the liquid crystal display panel, each pixel unit includes sub-pixel units displaying different colors, at a position of the apposed substrate or the array substrate corresponding to the sub-pixel unit of at least one color in each pixel unit, a monochromatic quantum dot layer is disposed. This liquid crystal display panel has increased color gamut of the liquid crystal display panel, enhanced color saturation, increased display quality, and increased life of quantum dots. A display device and a process for patterning the monochromatic quantum dot layer are also provided.
Abstract:
Embodiments of the present invention provide a method for driving a pixel array. The pixel array comprises a plurality of pixel units, each comprising a plurality of sub-pixels of different colors, each sub-pixel having an aspect ratio from 1:2 to 1:1. The method comprises steps of: dividing an image to be displayed on the pixel array into a plurality of theoretical pixel units, each theoretical pixel unit comprising a plurality of color components; and calculating a luminance value of each sub-pixel of each pixel-unit based on the color components of respective divided theoretical pixel units.
Abstract:
An image display method, device and electronic apparatus avoid to some extent a problem of a poor display effect due to adjusting an image purely depending on an RGB image conversion algorithm. The solution comprises obtaining a brightness value of current ambient light; performing image conversion on a frame of image having three primary color components to obtain a first display information, the first display information comprising four primary color gray scale values of each pixel in the image; adjusting the first display information to a second display information according to the brightness value, the second display information comprising four primary color gray scale values of each adjusted pixel; and displaying the image according to the second display information.
Abstract:
The present disclosure provides an image processing method based on a virtual algorithm, comprising: a) simulating a single subpixel; b) simulating a subpixel array of a single color; c) overlaying subpixel arrays of different colors; and d) deriving a virtual signal.