Abstract:
Systems and methods for transmitting content are provided. In some aspects, a method includes receiving an indication of a plurality of input streams of content. Each input stream is associated with an input bit rate. The method includes determining a plurality of output bit rates at which to transmit the content to one or more client devices, comparing the plurality of input bit rates to the plurality of output bit rates, and generating, by a server, a plurality of output streams of the content based on the comparison. Each generated output stream is associated with a corresponding output bit rate and includes a transcoded input stream or a non-transcoded input stream. The plurality of output streams is generated such that a number of output streams comprising non-transcoded input streams is maximized. The method also includes transmitting the generated output streams to the one or more client devices.
Abstract:
A device and method for providing an adaptive bit rate (ABR) proxy is disclosed. An ABR proxy determines an optimal data format to receive content segments for an audio/video (AV) content item from a source ABR server, and generates, based on that format and/or current network conditions, one or more local AV representations for providing content segments for the AV content item to locally connected devices. A local client device selects a local AV representation, and the ABR proxy provides the content segments for the AV content item to the local device in accordance with the selected local AV representation.
Abstract:
A data communication architecture delivers a wide variety of content, including audio and video content, to consumers. The architecture employs channel bonding to deliver more bandwidth than any single communication channel can carry. The architecture includes intermediate network devices that may receive content and send content using different groups of communication channels. The network device may process content received across a first set of communication channels for transmission across a second set of communication channels different from the first set. Such processing may preserve a program order of the content during delivery to a destination device.
Abstract:
A media gateway (MG) that services a plurality of client devices, may be handled at least a portion of video conferencing (VC) processing during a VC call between at least one of said plurality of client devices and at least one other VC client. The portion of the VC processing handled by the media gateway may be offloaded from a centralized VC multipoint control unit (MCU). The MG may handle one or more VC MCU functions, which may comprise video conferencing call control and/or management and/or audio/video (AV) transcoding. The MG may perform localized quality of service (QoS) management, to select, and adaptively control and/or configure resources and/or local links used in the MG and/or in VC clients or neighboring MGs connected to the MG, during VC operations, such as in generating, handling, and/or communicating data or content exchanged during VC calls.
Abstract:
An IP multimedia gateway (IMG) receives content sharing service profiles generated by a service manager for communication devices that are coupled to the IMG. Content and/or content information that is received for communication to a first device, is communicated to other devices in response to a request. Content sharing profiles comprise permissions, group members, user preferences, device capabilities and security profiles. Content streams communicated to the first device may be shared with a second device based on the profiles. The second device may share additional streams with the first device. The first device or other devices may communicate the request. The content may be received from a service manager network device. The IMG and a communication device that may display the content may be integrated in a set-top-box or digital TV. Login access is enabled to devices for requesting content. Cooperation with other IMGs may enable discovery and/or content communication.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute video programming in the form of MPEG2 TS packets, flagged by marker packets, in a round-robin manner across the communication channels. Channel bonding synchronization information may be present in packets defined above the data-link layer or added to fields within data-link layer frames.
Abstract:
A broadband gateway may provide energy management service within a home network. The energy management service may enable reducing and/or enhancing energy consumption within the home network. The energy management service may comprise managing one or more devices in the home network by the broadband gateway. The energy management service may be performed based on energy-related information associated with devices, and the information may be stored by the broadband gateway. At least some of the energy-related information may be acquired from the managed devices. The energy management service may comprise controlling and/or configuring the managed devices, and/or communications between the managed devices within the home network. The broadband gateway may track actual energy usage by the managed devices. Information corresponding to energy-related activities and/or usage may be displayed via a user interface. The information may also be reported to entities external to the home network.
Abstract:
An adaptive biometric authentication system may include a user identity reference module that is configured to maintain user identification items stored in a secure memory. The system may include a passive data aggregator that is configured to receive and aggregate data items that are passively collected by a device that is in proximity to a user. The system may include a user identity confidence level generator that is configured to generate a user identity confidence level that indicates a confidence that the user in proximity to the device is the reference user based at least in part on a comparison between the passively collected data items and the user identification items, and to update the user identity confidence level as additional passively collected data items are received. The system may include an authentication module that facilitates user authentication based at least in part on the user identity confidence level.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute data streams to bonded channels that are clocked independently. A system is provided for synchronizing the bonded channels.
Abstract:
A system includes one or more network media service devices, with each network media node operably connected upstream to one or more gateway devices. At least one of the network media service devices is configured to intercept an ABR-related request to receive digital media content for a media channel sent from a client set top box to a remote ABR server located upstream from the at least one network media device, identify a second gateway device that is storing the digital media content, the second gateway device having previously received the digital media content from the remote ABR server, and return a network address of the second gateway device to the client set top box for use by the client set top box to receive the digital media content from the second gateway device. In various implementations, the network address is returned in connection with an HTTP response indicating a redirection to the network address.