Abstract:
A system may receive an input stream for a coding operation. The system may determine available coding modes for the coding operation. The system may include coding selection logic that may determine a coding mode in response to the based on the available selection of coding modes. The coding selection logic may use the selected coding mode to determine a coding strategy. The selection logic may send an indication of the selected coding mode and coding strategy to coding logic to support execution of the coding operation, which may use the selected coding mode and coding strategy.
Abstract:
An device and method for providing multiple adaptive bit rate (ABR) streams using a single transcoder is disclosed. The device receives a group of content segments for a media channel, and converts, using a transcoder, a first of the content segments from a source format to a first data format, a first time duration for converting the first content segment being less than a second time duration for receiving each group of segments. The converted segment is then sent to a client device. On receiving a request from the device for content segments in a second data format, the device performs an initialization of the transcoder to convert content segments from the source format to the second data format, the initialization being completed during a residual period of time, or “operational gap” produced by a difference between the first time duration and the second time duration.
Abstract:
Different data communication architectures receive a wide variety of content, including audio and video content, for consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures receive distributed video programming in the form of MPEG2 TS packets, flagged by marker packets. Channel bonding synchronization information may be present in packets defined above the data-link layer or received in fields within data-link layer frames.
Abstract:
Systems and methods for transmitting content using segment-based and non-segment-based streams are provided. In some aspects, a method includes identifying at least one segment-based stream of content. Each segment-based stream is associated with a respective first bit rate and includes one or more segments of the content. The method also includes identifying at least one non-segment-based stream of the content. Each non-segment-based stream is associated with a second bit rate and includes a continuous stream of the content. The method also includes enabling switching between use of i) the at least one segment-based stream and ii) the at least one non-segment-based stream to continuously transmit the content to one or more client devices.
Abstract:
An device and method for providing multiple adaptive bit rate (ABR) streams using a single transcoder is disclosed. The device receives a group of content segments for a media channel, and converts, using a transcoder, a first of the content segments from a source format to a first data format, a first time duration for converting the first content segment being less than a second time duration for receiving each group of segments. The converted segment is then sent to a client device. On receiving a request from the device for content segments in a second data format, the device performs an initialization of the transcoder to convert content segments from the source format to the second data format, the initialization being completed during a residual period of time, or “operational gap” produced by a difference between the first time duration and the second time duration.
Abstract:
The present disclosure relates generally to a system and method for file compression. More specifically, the disclosure introduces to a method for file compression wherein a group of files is identified by comparing a plurality of similarity characteristics. The group of files may then be compressed relative to at least one base file to improve compression efficiency.
Abstract:
A system may receive an input stream for a coding operation by a coding device. The system may determine a processing device to assist the coding device with the coding operation. The processing device may generate an indicator containing coding information or other coding assistance by processing the input stream. The processing device may send the indicator to the coding device. In some cases, the indicator may be embedded in the metadata of the stream by the processing device. The indicator may be extracted by the coding device. After reception of the indicator, the coding device may execute the coding task while using the information in the indicator to assist.
Abstract:
Different data communication architectures receive a wide variety of content, including audio and video content, for consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures receive distributed video programming in the form of MPEG2 TS packets, flagged by marker packets. Channel bonding synchronization information may be present in packets defined above the data-link layer or received in fields within data-link layer frames.
Abstract:
Systems and methods for transmitting content are provided. In some aspects, a method includes receiving an indication of a plurality of input streams of content. Each input stream is associated with an input bit rate. The method includes determining a plurality of output bit rates at which to transmit the content to one or more client devices, comparing the plurality of input bit rates to the plurality of output bit rates, and generating, by a server, a plurality of output streams of the content based on the comparison. Each generated output stream is associated with a corresponding output bit rate and includes a transcoded input stream or a non-transcoded input stream. The plurality of output streams is generated such that a number of output streams comprising non-transcoded input streams is maximized. The method also includes transmitting the generated output streams to the one or more client devices.
Abstract:
An apparatus and method for converting an IP-based multimedia channel and distributing the channel to a plurality of non-IP enabled devices based on the channel's popularity among the devices. The apparatus identifies a plurality of multimedia channels requested by a group of devices, and determines a data rate for providing each channel to the devices based on a popularity of each channel among the devices. The apparatus uses an adaptive bit rate (ABR) client to receive content segments for a respective one of the multimedia channels from an ABR server at a source data rate aligned with a determined data rate for providing the respective multimedia channel. The content segments are received at the source data rate, and converted by the apparatus to a continuous digital content stream. The apparatus then provides the continuous digital content stream to one or more of the devices at the determined data rate.