摘要:
One embodiment includes a method of receiving a transmitted signal. The method comprises receiving a signal transmitted over a channel. The signal comprises a known signal and an information signal. The method further includes determining at least one indicator of channel characteristics based at least in part on the portion of the known signal. The method further includes generating a first value indicative of the information signal based at least in part on the at least one indicator of the channel characteristics. The first value comprises an error signal. The method further comprises removing the error signal from the first estimate of the signal based at least in part on the portion of the known signal. Other embodiments include systems for performing the method and methods of making such systems.
摘要:
Techniques for facilitating cell search by user equipments (UEs) in a wireless communication system are described. In an aspect, a primary synchronization code (PSC) sequence may be generated based on a Frank sequence and a constant amplitude sequence that is repeated multiple times. In another aspect, a set of PSC sequences may be generated based on complementary sequences having good aperiodic correlation properties and efficient implementations. In one design, PSC sequences A+B and B+A may be formed based on Golay complementary sequences A and B, there “+” denotes concatenation. In yet another aspect, a set of secondary synchronization code (SSC) sequences may be generated based on a set of base sequences and different modulation symbols of a modulation scheme. Each base sequence may be modulated by each of M possible modulation symbols for the modulation scheme to obtain M different SSC sequences.
摘要:
Techniques for transmitting acknowledgement (ACK) information in a wireless communication system are described. The system supports data transmission to multiple user equipments (UEs) on the same downlink resources with spatial division multiple access (SDMA). A base station sends a data transmission with multiple (M) layers to M UEs. The downlink resources used for the data transmission are associated with ACK resources used to send ACK information for the data transmission. The ACK resources may be partitioned into M portions, e.g., based on frequency division multiplexing (FDM). Each of the M layers is associated with a respective portion of the ACK resources. A recipient UE for each layer sends ACK for that layer on the associated portion of the ACK resources. For each ACK resource portion, one or more pilot symbols may be sent on one or more resource elements, and ACK symbols may be sent on remaining resource elements.
摘要:
Systems and methodologies are described that provide techniques for efficient cell search in a wireless communication system. In one aspect, a frequency reuse pattern can be generated by applying frequency shifts to reference signals transmitted from cells that provide coverage for a NodeB based on cell IDs or cell group IDs for the cells. The frequency shifts applied to reference signals can then be utilized as a basis for multiplexing reference signals from different cells using frequency division multiplexing (FDM) or a combination of FDM and other multiplexing techniques. Other adjustments to reference signals transmitted from respective cells, such as transmit power adjustments, can further be made to improve detection performance.
摘要:
Aspects relate to a flexible interleaving scheme that provides frequency diversity to randomizes interference Frequency diversity groups can be utilized, wherein control channel elements (CCEs) gain greater frequency diversity for a given number of mini-CCEs (e.g., subset of CCEs). A frequency diversity group index is permuted according to a bit reversed scheme to facilitate control channel elements with a small number of mini-CCEs to also gain sufficient frequency diversity.
摘要:
Systems and methodologies are described that provide techniques for efficient cell search in a wireless communication system. In one aspect, a frequency reuse pattern can be generated by applying frequency shifts to reference signals transmitted from cells that provide coverage for a NodeB based on cell IDs or cell group IDs for the cells. The frequency shifts applied to reference signals can then be utilized as a basis for multiplexing reference signals from different cells using frequency division multiplexing (FDM) or a combination of FDM and other multiplexing techniques. Other adjustments to reference signals transmitted from respective cells, such as transmit power adjustments, can further be made to improve detection performance.
摘要:
One embodiment includes a method of receiving a transmitted signal. The method comprises receiving a signal transmitted over a channel. The signal comprises a known signal and an information signal. The method further includes determining at least one indicator of channel characteristics based at least in part on the portion of the known signal. The method further includes generating a first value indicative of the information signal based at least in part on the at least one indicator of the channel characteristics. The first value comprises an error signal. The method further comprises removing the error signal from the first estimate of the signal based at least in part on the portion of the known signal. Other embodiments include systems for performing the method and methods of making such systems.
摘要:
Techniques for supporting MIMO transmission are described. Users are classified into a first group of users to be scheduled individually for MIMO transmission and a second group of users that can be scheduled together for MIMO transmission. Transmission resources are allocated to the first and second groups, e.g., based upon various criteria such as the number of users in each group, data requirements of the users, total loading for each group, etc. The transmission resources may be hybrid automatic retransmission (HARQ) interlaces, frequency channels, time frequency resources, etc. The resource allocation may be semi-static. The transmission resources allocated to each group are used for data transmission on the downlink and/or uplink for the users in the group. HARQ with blanking may be used for data transmission for the users in the first group. HARQ without blanking may be used for data transmission for the users in the second group.
摘要:
Techniques for efficiently sending channel state information using differential encoding are described. Differential encoding may be performed across space, across frequency; across space and frequency, across space, frequency and time, or across some other combination of dimensions. In one design, spatial state information may be determined for multiple spatial channels on multiple subbands. The spatial channels may correspond to different antennas, different precoding vectors, etc. Channel quality indicator (CQI) values may be obtained for the multiple spatial channels on the multiple subbands. The CQI values may be differentially encoded across the multiple spatial channels and the multiple subbands to obtain differential CQI information. In another design, CQI values may be obtained for multiple spatial channels on the multiple subbands in multiple time intervals and may be differentially encoded across space, frequency and time. The differential CQI information and the spatial state information may be sent as feedback.
摘要:
Techniques for sending multiple-input multiple-output (MIMO) transmissions in wireless communication systems are described. In one design, a transmitter sends a first reference signal via a first link, e.g., a cell-specific reference signal via the downlink. The transmitter receives channel quality indicator (CQI) information determined by a receiver based on the first reference signal. The transmitter also receives a second reference signal from the receiver via a second link, e.g., a sounding reference signal via the uplink. The transmitter obtains at least one MIMO channel matrix for the first link based on the second reference signal. The transmitter determines at least one precoding matrix based on the at least one MIMO channel matrix, e.g., in accordance with ideal eigen-beamforming or pseudo eigen-beamforming. The transmitter then sends a data transmission to the receiver based on the at least one precoding matrix and the CQI information.