Abstract:
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancellation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
Abstract:
A personal audio device, such as a wireless telephone, generates an anti-noise signal from an error microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. The error microphone is also provided proximate the speaker to provide an error signal indicative of the effectiveness of the noise cancellation. A secondary path estimating adaptive filter is used to estimate the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Noise bursts are injected intermittently and the adaptation of the secondary path estimating adaptive filter controlled, so that the secondary path estimate can be maintained irrespective of the presence and amplitude of the source audio.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from an output of a microphone that measures ambient audio. The anti-noise signal is combined with source audio to provide an output for a speaker. The anti-noise signal causes cancellation of ambient audio sounds that appear at the microphone. A processing circuit estimates a level of background noise from the microphone output and sets a power conservation mode of the personal audio device in response to detecting that the background noise level is lower than a predetermined threshold.
Abstract:
An adaptive noise canceling (ANC) circuit adaptively generates an anti-noise signal from a reference microphone signal that is injected into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone proximate the speaker provides an error signal. A secondary path estimating adaptive filter estimates the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Tones in the source audio, such as remote ringtones, present in downlink audio during initiation of a telephone call, are detected by a tone detector using accumulated tone persistence and non-silence hangover counting, and adaptation of the secondary path estimating adaptive filter is halted to prevent adapting to the tones. Adaptation of the adaptive filters is then sequenced so any disruption of the secondary path adaptive filter response is removed before allowing the anti-noise generating filter to adapt.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate the speaker to measure the ambient sounds and transducer output near the transducer, thus providing an indication of the effectiveness of the noise canceling. A processing circuit uses the reference and/or error microphone, optionally along with a microphone provided for capturing near-end speech, to determine whether the ANC circuit is incorrectly adapting or may incorrectly adapt to the instant acoustic environment and/or whether the anti-noise signal may be incorrect and/or disruptive and then take action in the processing circuit to prevent or remedy such conditions.
Abstract:
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancelation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal that measures the ambient audio and an error microphone signal that measures the output of an output transducer plus any ambient audio at that location and injects the anti-noise signal at the transducer output to cause cancellation of ambient audio sounds. A processing circuit uses the reference and error microphone to generate the anti-noise signal, which can be generated by an adaptive filter operating at a multiple of the ANC coefficient update rate. Downlink audio can be combined with the high data rate anti-noise signal by interpolation. High-pass filters in the control paths reduce DC offset in the ANC circuits, and ANC coefficient adaptation can be halted when downlink audio is not detected.
Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit that performs the adaptive noise canceling (ANC) function also detects frequency-dependent characteristics in and/or direction of the ambient sounds and alters adaptation of the noise canceling circuit in response to the detection.
Abstract:
A personal audio device including earspeakers, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each earspeaker from at least one microphone signal that measures the ambient audio, and the anti-noise signals are combined with source audio to provide outputs for the earspeakers. The anti-noise signals cause cancellation of ambient audio sounds at the respective earspeakers. A processing circuit uses the microphone signal(s) to generate the anti-noise signals, which can be generated by adaptive filters. The processing circuit controls adaptation of the adaptive filters such that when the processing circuit detects that either of the earspeakers are off-ear, a gain applied to the anti-noise signals is reduced.
Abstract:
A personal audio device includes a sidetone circuit with one or more adjustable coefficients that generates a sidetone signal from the output of a first microphone. The sidetone circuit has one or more adjustable coefficients for altering the relationship between the first microphone signal and the sidetone signal. The personal audio device also includes a transducer for reproducing playback audio and the sidetone signal at an ear of a listener and a second microphone for measuring the output of the transducer as delivered to the ear of the listener. The sidetone circuit includes a calibration circuit for estimating a response of the second microphone to the sidetone signal and adjusting the coefficient of the sidetone circuit according to the estimated response.