Abstract:
A device for directing energy to a target volume of tissue includes an antenna assembly and an elongated body member. The elongated body member includes a proximal end portion and a distal end portion, wherein the proximal and distal end portions define a longitudinal axis. The elongated body member has a chamber defined therein that extends along the longitudinal axis, and a body wall surrounding the chamber. An antenna assembly is disposed in the chamber. The elongated body member also includes an opening in the body wall to allow energy radiated from the antenna assembly to transfer into the target volume of tissue.
Abstract:
Devices and methods for cooling microwave antennas are disclosed herein. The cooling systems can be used with various types of microwave antennas. One variation generally comprises a handle portion with an elongate outer jacket extending from the handle portion. A microwave antenna is positioned within the handle and outer jacket such that cooling fluid pumped into the handle comes into contact directly along a portion of the length, or a majority of the length, or the entire length of the antenna to allow for direct convective cooling. Other variations include cooling sheaths which form defined cooling channels around a portion of the antenna. Yet another variation includes passively-cooled systems which utilize expandable balloons to urge tissue away from the surface of the microwave antenna as well as cooling sheaths which are cooled through endothermic chemical reactions. Furthermore, the microwave antennas themselves can have cooling lumens integrated directly therethrough.
Abstract:
A triaxial microwave antenna assembly is disclosed. The triaxial microwave antenna includes a feedline having an inner conductor, a central conductor disposed about the inner conductor and an outer conductor disposed about the central conductor and a radiating portion including a high frequency radiating section and a low frequency radiating section.
Abstract:
A microwave ablation system includes an energy source adapted to generate microwave energy and a power splitting device having an input adapted to connect to the energy source and a plurality of outputs. The plurality of outputs are configured to be coupled to a corresponding plurality of energy delivery devices. The power splitting device is configured to selectively divide energy provided from the energy source between the plurality of energy devices.
Abstract:
A device for directing energy to tissue includes a feedline and a radiating portion electrically coupled to the feedline. The radiating portion includes a distal radiating section and a proximal radiating section. The feedline includes an inner conductor, an outer conductor and a first dielectric material disposed therebetween. The device also includes a choke disposed around at least a portion of the feedline. The choke includes a second dielectric material disposed around at least a portion of the outer conductor, wherein the second dielectric material includes at least one opening defined therein, and an electrically-conductive member disposed in the at least one opening electrically coupled to the outer conductor, wherein the electrically-conductive member is configured to contact tissue.
Abstract:
Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
Abstract:
A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
Abstract:
A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
Abstract:
A method of displaying an area of interest within a surgical site includes modeling a patient's lungs and identifying a location of an area of interest within the model of the patient's lungs. The topography of the surface of the patient's lungs is determined using an endoscope having a first camera, a light source, and a structured light pattern source. Real-time images of the patient's lungs are displayed on a monitor and the real-time images are registered to the model of the patient's lungs using the determined topography of the patient's lungs. A marker indicative of the location of the area of interest is superimposed over the real-time images of the patient's lungs. If the marker falls outside of the field-of view of the endoscope, an arrow is superimposed over the real-time images to indicate the direction in which the marker is located relative to the field of view.
Abstract:
A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.