Abstract:
An engine including a WHR system includes a clutch positioned to engage or disengage a WHR feedpump that moves working fluid through a WHR circuit. The clutch engages or disengages the feedpump under certain operating conditions of the engine and/or the WHR system, and/or at the request of an operator of the engine. Conditions may include cool or cold components, and insufficient working fluid. The operator may also request the clutch be disengaged, such as might be advantageous if the operator detects an operational problem with the WHR system or determines there is an advantage to operating the engine without the WHR system.
Abstract:
The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.
Abstract:
A waste heat recovery system for use with an engine. The waste heat recovery system receives heat input from both an exhaust gas recovery system and exhaust gas streams. The system includes a first loop and a second loop. The first loop is configured to receive heat from both the exhaust gas recovery system and the exhaust system as necessary. The second loop receives heat from the first loop and the exhaust gas recovery system. The second loop converts the heat energy into electrical energy through the use of a turbine.
Abstract:
A waste heat recovery system comprising a thermal circuit. The thermal circuit includes a boiler and an expander fluidly coupled to the boiler. The thermal circuit further includes a power transfer system integrated to the expander. The power transfer system is configured to receive mechanical energy from the expander. The thermal circuit further includes an ejector fluidly coupled to the boiler and to the power transfer system. The ejector is configured to receive a motive flow of working fluid from the boiler. The ejector is further configured to receive a suction flow of working fluid from the power transfer system. The ejector is further configured to combine the motive flow of working fluid and the suction flow of working fluid.
Abstract:
A cooling system for an electrified vehicle includes a first cooling loop for circulating coolant for cooling at least one of power electronics and a motor/generator of the vehicle. The first coolant loop includes a heat exchanger for exchanging heat with the coolant in the first cooling loop. A second cooling loop is provided for circulating coolant for cooling a battery of the vehicle. The second cooling loop includes a coolant chiller connected to a refrigeration system of the vehicle for exchanging heat in the coolant received from the battery with the refrigeration system of the vehicle.
Abstract:
A waste heat recovery (WHR) system that can be utilized in internal combustion engine systems includes at least two circuits, one having a low pressure working fluid and another having a high pressure working fluid. Each circuit can include heat exchangers to allow the working fluid to absorb heat form one or more heat source fluids associated with the engine. The system can also include an expander configured to receive the working fluid from the at least two circuits, and generating mechanical power. The system also can include a condenser, a sub cooler, and at least one working fluid pump to pump the working fluid in the at least two circuits. The cooling system also includes a controller that can receive temperature and pressure values from various locations in the WHR system and control at least the flow rates of the working fluids in the at least two circuits.
Abstract:
A waste heat recovery system for an engine system includes a first charge air cooler in communication with a working fluid path of the waste heat recovery system. The first charge air cooler includes a first waste heat recovery core and a first cooling fluid core. The first waste heat recovery core includes a first working fluid inlet configured to receive a working fluid from the working fluid path. The first working fluid conduit is coupled to the first working fluid inlet and a first working fluid outlet. The first cooling fluid core includes a first cooling fluid inlet in fluid communication with a cooling fluid source and a first cooling fluid conduit fluidly coupled to the first cooling fluid inlet and a first cooling fluid outlet. The first cooling fluid conduit is configured to direct cooling fluid from the first cooling fluid inlet to the first cooling fluid outlet.
Abstract:
A waste heat recovery (WHR) hybrid power system can be utilized in vehicles to convert heat energy into mechanical energy. The WHR system can include a WHR power unit structured to convert thermal energy into rotation of a WHR drive shaft. A motor/generator having a motor/generator shaft can selectively operate as a motor or a generator. A mechanical linkage can be structured to selectively link a output shaft to one of the WHR drive shaft and the motor/generator drive shaft independently of the other of the WHR drive shaft and the motor/generator drive shaft.
Abstract:
A vehicle system includes an engine, a transmission, a differential, and a waste heat recovery (WHR) drive that converts thermal energy into mechanical and electrical energy. The WHR drive can include a WHR power unit structured to convert thermal energy into rotation of a WHR drive shaft. A motor/generator having a motor/generator shaft can selectively operate as a motor or a generator. A mechanical linkage is structured to selectively link an output shaft to one of the WHR drive shaft and the motor/generator drive shaft independently of the other of the WHR drive shaft and the motor/generator drive shaft. The output shaft is selectively coupled to one of the engine, the transmission, or the differential. The vehicle system may also include a traction motor to provide drive to the vehicle. The output shaft can be selectively coupled to the traction motor or the engine.
Abstract:
A waste heat recovery system comprises an exhaust system, a thermal oil circuit, and a Rankine cycle circuit. The exhaust system is configured to provide exhaust gases. The thermal oil circuit comprises a first heat exchanger and a second heat exchanger. The first heat exchanger is positioned along the exhaust system. The first heat exchanger receives heat from exhaust gases and separately receives thermal oil such that heat from exhaust gases is transferred to thermal oil within the first heat exchanger. The second heat exchanger receives thermal oil from the first heat exchanger and provides thermal oil to the first heat exchanger. The Rankine cycle circuit circulates working fluid through the second heat exchanger separate from thermal oil such that heat from thermal oil is transferred to working fluid within the second heat exchanger. An expander utilizes heat within working fluid to produce mechanical energy.